Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsniunop Structured version   Visualization version   GIF version

Theorem fsetsniunop 47061
Description: The class of all functions from a (proper) singleton into 𝐵 is the union of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetsniunop (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = 𝑏𝐵 {{⟨𝑆, 𝑏⟩}})
Distinct variable groups:   𝐵,𝑏,𝑓   𝑆,𝑏,𝑓   𝑉,𝑏
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetsniunop
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fsn2g 7158 . . . . . 6 (𝑆𝑉 → (𝑔:{𝑆}⟶𝐵 ↔ ((𝑔𝑆) ∈ 𝐵𝑔 = {⟨𝑆, (𝑔𝑆)⟩})))
2 simpl 482 . . . . . . 7 (((𝑔𝑆) ∈ 𝐵𝑔 = {⟨𝑆, (𝑔𝑆)⟩}) → (𝑔𝑆) ∈ 𝐵)
3 opeq2 4874 . . . . . . . . . 10 (𝑏 = (𝑔𝑆) → ⟨𝑆, 𝑏⟩ = ⟨𝑆, (𝑔𝑆)⟩)
43sneqd 4638 . . . . . . . . 9 (𝑏 = (𝑔𝑆) → {⟨𝑆, 𝑏⟩} = {⟨𝑆, (𝑔𝑆)⟩})
54eqeq2d 2748 . . . . . . . 8 (𝑏 = (𝑔𝑆) → (𝑔 = {⟨𝑆, 𝑏⟩} ↔ 𝑔 = {⟨𝑆, (𝑔𝑆)⟩}))
65adantl 481 . . . . . . 7 ((((𝑔𝑆) ∈ 𝐵𝑔 = {⟨𝑆, (𝑔𝑆)⟩}) ∧ 𝑏 = (𝑔𝑆)) → (𝑔 = {⟨𝑆, 𝑏⟩} ↔ 𝑔 = {⟨𝑆, (𝑔𝑆)⟩}))
7 simpr 484 . . . . . . 7 (((𝑔𝑆) ∈ 𝐵𝑔 = {⟨𝑆, (𝑔𝑆)⟩}) → 𝑔 = {⟨𝑆, (𝑔𝑆)⟩})
82, 6, 7rspcedvd 3624 . . . . . 6 (((𝑔𝑆) ∈ 𝐵𝑔 = {⟨𝑆, (𝑔𝑆)⟩}) → ∃𝑏𝐵 𝑔 = {⟨𝑆, 𝑏⟩})
91, 8biimtrdi 253 . . . . 5 (𝑆𝑉 → (𝑔:{𝑆}⟶𝐵 → ∃𝑏𝐵 𝑔 = {⟨𝑆, 𝑏⟩}))
10 simpl 482 . . . . . . . . . 10 ((𝑆𝑉𝑏𝐵) → 𝑆𝑉)
11 simpr 484 . . . . . . . . . 10 ((𝑆𝑉𝑏𝐵) → 𝑏𝐵)
1210, 11fsnd 6891 . . . . . . . . 9 ((𝑆𝑉𝑏𝐵) → {⟨𝑆, 𝑏⟩}:{𝑆}⟶𝐵)
1312adantr 480 . . . . . . . 8 (((𝑆𝑉𝑏𝐵) ∧ 𝑔 = {⟨𝑆, 𝑏⟩}) → {⟨𝑆, 𝑏⟩}:{𝑆}⟶𝐵)
14 simpr 484 . . . . . . . . 9 (((𝑆𝑉𝑏𝐵) ∧ 𝑔 = {⟨𝑆, 𝑏⟩}) → 𝑔 = {⟨𝑆, 𝑏⟩})
1514feq1d 6720 . . . . . . . 8 (((𝑆𝑉𝑏𝐵) ∧ 𝑔 = {⟨𝑆, 𝑏⟩}) → (𝑔:{𝑆}⟶𝐵 ↔ {⟨𝑆, 𝑏⟩}:{𝑆}⟶𝐵))
1613, 15mpbird 257 . . . . . . 7 (((𝑆𝑉𝑏𝐵) ∧ 𝑔 = {⟨𝑆, 𝑏⟩}) → 𝑔:{𝑆}⟶𝐵)
1716ex 412 . . . . . 6 ((𝑆𝑉𝑏𝐵) → (𝑔 = {⟨𝑆, 𝑏⟩} → 𝑔:{𝑆}⟶𝐵))
1817rexlimdva 3155 . . . . 5 (𝑆𝑉 → (∃𝑏𝐵 𝑔 = {⟨𝑆, 𝑏⟩} → 𝑔:{𝑆}⟶𝐵))
199, 18impbid 212 . . . 4 (𝑆𝑉 → (𝑔:{𝑆}⟶𝐵 ↔ ∃𝑏𝐵 𝑔 = {⟨𝑆, 𝑏⟩}))
20 velsn 4642 . . . . . 6 (𝑔 ∈ {{⟨𝑆, 𝑏⟩}} ↔ 𝑔 = {⟨𝑆, 𝑏⟩})
2120bicomi 224 . . . . 5 (𝑔 = {⟨𝑆, 𝑏⟩} ↔ 𝑔 ∈ {{⟨𝑆, 𝑏⟩}})
2221rexbii 3094 . . . 4 (∃𝑏𝐵 𝑔 = {⟨𝑆, 𝑏⟩} ↔ ∃𝑏𝐵 𝑔 ∈ {{⟨𝑆, 𝑏⟩}})
2319, 22bitrdi 287 . . 3 (𝑆𝑉 → (𝑔:{𝑆}⟶𝐵 ↔ ∃𝑏𝐵 𝑔 ∈ {{⟨𝑆, 𝑏⟩}}))
24 vex 3484 . . . 4 𝑔 ∈ V
25 feq1 6716 . . . 4 (𝑓 = 𝑔 → (𝑓:{𝑆}⟶𝐵𝑔:{𝑆}⟶𝐵))
2624, 25elab 3679 . . 3 (𝑔 ∈ {𝑓𝑓:{𝑆}⟶𝐵} ↔ 𝑔:{𝑆}⟶𝐵)
27 eliun 4995 . . 3 (𝑔 𝑏𝐵 {{⟨𝑆, 𝑏⟩}} ↔ ∃𝑏𝐵 𝑔 ∈ {{⟨𝑆, 𝑏⟩}})
2823, 26, 273bitr4g 314 . 2 (𝑆𝑉 → (𝑔 ∈ {𝑓𝑓:{𝑆}⟶𝐵} ↔ 𝑔 𝑏𝐵 {{⟨𝑆, 𝑏⟩}}))
2928eqrdv 2735 1 (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = 𝑏𝐵 {{⟨𝑆, 𝑏⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wrex 3070  {csn 4626  cop 4632   ciun 4991  wf 6557  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569
This theorem is referenced by:  fsetabsnop  47062
  Copyright terms: Public domain W3C validator