Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsniunop Structured version   Visualization version   GIF version

Theorem fsetsniunop 44430
Description: The class of all functions from a (proper) singleton into 𝐵 is the union of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.)
Assertion
Ref Expression
fsetsniunop (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = 𝑏𝐵 {{⟨𝑆, 𝑏⟩}})
Distinct variable groups:   𝐵,𝑏,𝑓   𝑆,𝑏,𝑓   𝑉,𝑏
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetsniunop
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fsn2g 6992 . . . . . 6 (𝑆𝑉 → (𝑔:{𝑆}⟶𝐵 ↔ ((𝑔𝑆) ∈ 𝐵𝑔 = {⟨𝑆, (𝑔𝑆)⟩})))
2 simpl 482 . . . . . . 7 (((𝑔𝑆) ∈ 𝐵𝑔 = {⟨𝑆, (𝑔𝑆)⟩}) → (𝑔𝑆) ∈ 𝐵)
3 opeq2 4802 . . . . . . . . . 10 (𝑏 = (𝑔𝑆) → ⟨𝑆, 𝑏⟩ = ⟨𝑆, (𝑔𝑆)⟩)
43sneqd 4570 . . . . . . . . 9 (𝑏 = (𝑔𝑆) → {⟨𝑆, 𝑏⟩} = {⟨𝑆, (𝑔𝑆)⟩})
54eqeq2d 2749 . . . . . . . 8 (𝑏 = (𝑔𝑆) → (𝑔 = {⟨𝑆, 𝑏⟩} ↔ 𝑔 = {⟨𝑆, (𝑔𝑆)⟩}))
65adantl 481 . . . . . . 7 ((((𝑔𝑆) ∈ 𝐵𝑔 = {⟨𝑆, (𝑔𝑆)⟩}) ∧ 𝑏 = (𝑔𝑆)) → (𝑔 = {⟨𝑆, 𝑏⟩} ↔ 𝑔 = {⟨𝑆, (𝑔𝑆)⟩}))
7 simpr 484 . . . . . . 7 (((𝑔𝑆) ∈ 𝐵𝑔 = {⟨𝑆, (𝑔𝑆)⟩}) → 𝑔 = {⟨𝑆, (𝑔𝑆)⟩})
82, 6, 7rspcedvd 3555 . . . . . 6 (((𝑔𝑆) ∈ 𝐵𝑔 = {⟨𝑆, (𝑔𝑆)⟩}) → ∃𝑏𝐵 𝑔 = {⟨𝑆, 𝑏⟩})
91, 8syl6bi 252 . . . . 5 (𝑆𝑉 → (𝑔:{𝑆}⟶𝐵 → ∃𝑏𝐵 𝑔 = {⟨𝑆, 𝑏⟩}))
10 simpl 482 . . . . . . . . . 10 ((𝑆𝑉𝑏𝐵) → 𝑆𝑉)
11 simpr 484 . . . . . . . . . 10 ((𝑆𝑉𝑏𝐵) → 𝑏𝐵)
1210, 11fsnd 6742 . . . . . . . . 9 ((𝑆𝑉𝑏𝐵) → {⟨𝑆, 𝑏⟩}:{𝑆}⟶𝐵)
1312adantr 480 . . . . . . . 8 (((𝑆𝑉𝑏𝐵) ∧ 𝑔 = {⟨𝑆, 𝑏⟩}) → {⟨𝑆, 𝑏⟩}:{𝑆}⟶𝐵)
14 simpr 484 . . . . . . . . 9 (((𝑆𝑉𝑏𝐵) ∧ 𝑔 = {⟨𝑆, 𝑏⟩}) → 𝑔 = {⟨𝑆, 𝑏⟩})
1514feq1d 6569 . . . . . . . 8 (((𝑆𝑉𝑏𝐵) ∧ 𝑔 = {⟨𝑆, 𝑏⟩}) → (𝑔:{𝑆}⟶𝐵 ↔ {⟨𝑆, 𝑏⟩}:{𝑆}⟶𝐵))
1613, 15mpbird 256 . . . . . . 7 (((𝑆𝑉𝑏𝐵) ∧ 𝑔 = {⟨𝑆, 𝑏⟩}) → 𝑔:{𝑆}⟶𝐵)
1716ex 412 . . . . . 6 ((𝑆𝑉𝑏𝐵) → (𝑔 = {⟨𝑆, 𝑏⟩} → 𝑔:{𝑆}⟶𝐵))
1817rexlimdva 3212 . . . . 5 (𝑆𝑉 → (∃𝑏𝐵 𝑔 = {⟨𝑆, 𝑏⟩} → 𝑔:{𝑆}⟶𝐵))
199, 18impbid 211 . . . 4 (𝑆𝑉 → (𝑔:{𝑆}⟶𝐵 ↔ ∃𝑏𝐵 𝑔 = {⟨𝑆, 𝑏⟩}))
20 velsn 4574 . . . . . 6 (𝑔 ∈ {{⟨𝑆, 𝑏⟩}} ↔ 𝑔 = {⟨𝑆, 𝑏⟩})
2120bicomi 223 . . . . 5 (𝑔 = {⟨𝑆, 𝑏⟩} ↔ 𝑔 ∈ {{⟨𝑆, 𝑏⟩}})
2221rexbii 3177 . . . 4 (∃𝑏𝐵 𝑔 = {⟨𝑆, 𝑏⟩} ↔ ∃𝑏𝐵 𝑔 ∈ {{⟨𝑆, 𝑏⟩}})
2319, 22bitrdi 286 . . 3 (𝑆𝑉 → (𝑔:{𝑆}⟶𝐵 ↔ ∃𝑏𝐵 𝑔 ∈ {{⟨𝑆, 𝑏⟩}}))
24 vex 3426 . . . 4 𝑔 ∈ V
25 feq1 6565 . . . 4 (𝑓 = 𝑔 → (𝑓:{𝑆}⟶𝐵𝑔:{𝑆}⟶𝐵))
2624, 25elab 3602 . . 3 (𝑔 ∈ {𝑓𝑓:{𝑆}⟶𝐵} ↔ 𝑔:{𝑆}⟶𝐵)
27 eliun 4925 . . 3 (𝑔 𝑏𝐵 {{⟨𝑆, 𝑏⟩}} ↔ ∃𝑏𝐵 𝑔 ∈ {{⟨𝑆, 𝑏⟩}})
2823, 26, 273bitr4g 313 . 2 (𝑆𝑉 → (𝑔 ∈ {𝑓𝑓:{𝑆}⟶𝐵} ↔ 𝑔 𝑏𝐵 {{⟨𝑆, 𝑏⟩}}))
2928eqrdv 2736 1 (𝑆𝑉 → {𝑓𝑓:{𝑆}⟶𝐵} = 𝑏𝐵 {{⟨𝑆, 𝑏⟩}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  {csn 4558  cop 4564   ciun 4921  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  fsetabsnop  44431
  Copyright terms: Public domain W3C validator