Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl121anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl121anc.5 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl121anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 2, 3 | jca 511 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl121anc.5 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
7 | 1, 4, 5, 6 | syl3anc 1369 | 1 ⊢ (𝜑 → 𝜂) |
Copyright terms: Public domain | W3C validator |