MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunf Structured version   Visualization version   GIF version

Theorem fsnunf 7177
Description: Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇)

Proof of Theorem fsnunf
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → 𝐹:𝑆𝑇)
2 simp2l 1200 . . . . 5 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → 𝑋𝑉)
3 simp3 1138 . . . . 5 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → 𝑌𝑇)
4 f1osng 6859 . . . . 5 ((𝑋𝑉𝑌𝑇) → {⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌})
52, 3, 4syl2anc 584 . . . 4 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → {⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌})
6 f1of 6818 . . . 4 ({⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌} → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
75, 6syl 17 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
8 simp2r 1201 . . . 4 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → ¬ 𝑋𝑆)
9 disjsn 4687 . . . 4 ((𝑆 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝑆)
108, 9sylibr 234 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝑆 ∩ {𝑋}) = ∅)
11 fun 6740 . . 3 (((𝐹:𝑆𝑇 ∧ {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌}) ∧ (𝑆 ∩ {𝑋}) = ∅) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}))
121, 7, 10, 11syl21anc 837 . 2 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}))
13 snssi 4784 . . . . 5 (𝑌𝑇 → {𝑌} ⊆ 𝑇)
14133ad2ant3 1135 . . . 4 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → {𝑌} ⊆ 𝑇)
15 ssequn2 4164 . . . 4 ({𝑌} ⊆ 𝑇 ↔ (𝑇 ∪ {𝑌}) = 𝑇)
1614, 15sylib 218 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝑇 ∪ {𝑌}) = 𝑇)
1716feq3d 6693 . 2 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}) ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇))
1812, 17mpbid 232 1 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601  cop 4607  wf 6527  1-1-ontowf1o 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538
This theorem is referenced by:  fsnunf2  7178  f1ounsn  7265  fnchoice  45053  nnsum4primeseven  47814  nnsum4primesevenALTV  47815
  Copyright terms: Public domain W3C validator