MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunf Structured version   Visualization version   GIF version

Theorem fsnunf 6970
Description: Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇)

Proof of Theorem fsnunf
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → 𝐹:𝑆𝑇)
2 simp2l 1200 . . . . 5 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → 𝑋𝑉)
3 simp3 1139 . . . . 5 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → 𝑌𝑇)
4 f1osng 6671 . . . . 5 ((𝑋𝑉𝑌𝑇) → {⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌})
52, 3, 4syl2anc 587 . . . 4 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → {⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌})
6 f1of 6631 . . . 4 ({⟨𝑋, 𝑌⟩}:{𝑋}–1-1-onto→{𝑌} → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
75, 6syl 17 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌})
8 simp2r 1201 . . . 4 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → ¬ 𝑋𝑆)
9 disjsn 4612 . . . 4 ((𝑆 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝑆)
108, 9sylibr 237 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝑆 ∩ {𝑋}) = ∅)
11 fun 6551 . . 3 (((𝐹:𝑆𝑇 ∧ {⟨𝑋, 𝑌⟩}:{𝑋}⟶{𝑌}) ∧ (𝑆 ∩ {𝑋}) = ∅) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}))
121, 7, 10, 11syl21anc 837 . 2 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}))
13 snssi 4706 . . . . 5 (𝑌𝑇 → {𝑌} ⊆ 𝑇)
14133ad2ant3 1136 . . . 4 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → {𝑌} ⊆ 𝑇)
15 ssequn2 4083 . . . 4 ({𝑌} ⊆ 𝑇 ↔ (𝑇 ∪ {𝑌}) = 𝑇)
1614, 15sylib 221 . . 3 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝑇 ∪ {𝑌}) = 𝑇)
1716feq3d 6502 . 2 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}) ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇))
1812, 17mpbid 235 1 ((𝐹:𝑆𝑇 ∧ (𝑋𝑉 ∧ ¬ 𝑋𝑆) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):(𝑆 ∪ {𝑋})⟶𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  cun 3851  cin 3852  wss 3853  c0 4221  {csn 4526  cop 4532  wf 6346  1-1-ontowf1o 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-br 5041  df-opab 5103  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357
This theorem is referenced by:  fsnunf2  6971  fnchoice  42151  nnsum4primeseven  44834  nnsum4primesevenALTV  44835
  Copyright terms: Public domain W3C validator