Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsnunf | Structured version Visualization version GIF version |
Description: Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
fsnunf | ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝐹:𝑆⟶𝑇) | |
2 | simp2l 1197 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝑋 ∈ 𝑉) | |
3 | simp3 1136 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝑌 ∈ 𝑇) | |
4 | f1osng 6740 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌}) | |
5 | 2, 3, 4 | syl2anc 583 | . . . 4 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌}) |
6 | f1of 6700 | . . . 4 ⊢ ({〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌} → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
8 | simp2r 1198 | . . . 4 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → ¬ 𝑋 ∈ 𝑆) | |
9 | disjsn 4644 | . . . 4 ⊢ ((𝑆 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝑆) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝑆 ∩ {𝑋}) = ∅) |
11 | fun 6620 | . . 3 ⊢ (((𝐹:𝑆⟶𝑇 ∧ {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) ∧ (𝑆 ∩ {𝑋}) = ∅) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌})) | |
12 | 1, 7, 10, 11 | syl21anc 834 | . 2 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌})) |
13 | snssi 4738 | . . . . 5 ⊢ (𝑌 ∈ 𝑇 → {𝑌} ⊆ 𝑇) | |
14 | 13 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {𝑌} ⊆ 𝑇) |
15 | ssequn2 4113 | . . . 4 ⊢ ({𝑌} ⊆ 𝑇 ↔ (𝑇 ∪ {𝑌}) = 𝑇) | |
16 | 14, 15 | sylib 217 | . . 3 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝑇 ∪ {𝑌}) = 𝑇) |
17 | 16 | feq3d 6571 | . 2 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → ((𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}) ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇)) |
18 | 12, 17 | mpbid 231 | 1 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 〈cop 4564 ⟶wf 6414 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: fsnunf2 7040 fnchoice 42461 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 |
Copyright terms: Public domain | W3C validator |