| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftp | Structured version Visualization version GIF version | ||
| Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.) |
| Ref | Expression |
|---|---|
| ftp.a | ⊢ 𝐴 ∈ V |
| ftp.b | ⊢ 𝐵 ∈ V |
| ftp.c | ⊢ 𝐶 ∈ V |
| ftp.d | ⊢ 𝑋 ∈ V |
| ftp.e | ⊢ 𝑌 ∈ V |
| ftp.f | ⊢ 𝑍 ∈ V |
| ftp.g | ⊢ 𝐴 ≠ 𝐵 |
| ftp.h | ⊢ 𝐴 ≠ 𝐶 |
| ftp.i | ⊢ 𝐵 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| ftp | ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftp.a | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | ftp.b | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | ftp.c | . . 3 ⊢ 𝐶 ∈ V | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) |
| 5 | ftp.d | . . 3 ⊢ 𝑋 ∈ V | |
| 6 | ftp.e | . . 3 ⊢ 𝑌 ∈ V | |
| 7 | ftp.f | . . 3 ⊢ 𝑍 ∈ V | |
| 8 | 5, 6, 7 | 3pm3.2i 1340 | . 2 ⊢ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) |
| 9 | ftp.g | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 10 | ftp.h | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
| 11 | ftp.i | . . 3 ⊢ 𝐵 ≠ 𝐶 | |
| 12 | 9, 10, 11 | 3pm3.2i 1340 | . 2 ⊢ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) |
| 13 | ftpg 7094 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}) | |
| 14 | 4, 8, 12, 13 | mp3an 1463 | 1 ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 {ctp 4583 〈cop 4585 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 |
| This theorem is referenced by: rabren3dioph 42788 nnsum4primesodd 47781 nnsum4primesoddALTV 47782 |
| Copyright terms: Public domain | W3C validator |