| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftp | Structured version Visualization version GIF version | ||
| Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.) |
| Ref | Expression |
|---|---|
| ftp.a | ⊢ 𝐴 ∈ V |
| ftp.b | ⊢ 𝐵 ∈ V |
| ftp.c | ⊢ 𝐶 ∈ V |
| ftp.d | ⊢ 𝑋 ∈ V |
| ftp.e | ⊢ 𝑌 ∈ V |
| ftp.f | ⊢ 𝑍 ∈ V |
| ftp.g | ⊢ 𝐴 ≠ 𝐵 |
| ftp.h | ⊢ 𝐴 ≠ 𝐶 |
| ftp.i | ⊢ 𝐵 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| ftp | ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftp.a | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | ftp.b | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | ftp.c | . . 3 ⊢ 𝐶 ∈ V | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) |
| 5 | ftp.d | . . 3 ⊢ 𝑋 ∈ V | |
| 6 | ftp.e | . . 3 ⊢ 𝑌 ∈ V | |
| 7 | ftp.f | . . 3 ⊢ 𝑍 ∈ V | |
| 8 | 5, 6, 7 | 3pm3.2i 1340 | . 2 ⊢ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) |
| 9 | ftp.g | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 10 | ftp.h | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
| 11 | ftp.i | . . 3 ⊢ 𝐵 ≠ 𝐶 | |
| 12 | 9, 10, 11 | 3pm3.2i 1340 | . 2 ⊢ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) |
| 13 | ftpg 7089 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}) | |
| 14 | 4, 8, 12, 13 | mp3an 1463 | 1 ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 {ctp 4580 〈cop 4582 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 |
| This theorem is referenced by: rabren3dioph 42847 nnsum4primesodd 47826 nnsum4primesoddALTV 47827 |
| Copyright terms: Public domain | W3C validator |