![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftp | Structured version Visualization version GIF version |
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.) |
Ref | Expression |
---|---|
ftp.a | ⊢ 𝐴 ∈ V |
ftp.b | ⊢ 𝐵 ∈ V |
ftp.c | ⊢ 𝐶 ∈ V |
ftp.d | ⊢ 𝑋 ∈ V |
ftp.e | ⊢ 𝑌 ∈ V |
ftp.f | ⊢ 𝑍 ∈ V |
ftp.g | ⊢ 𝐴 ≠ 𝐵 |
ftp.h | ⊢ 𝐴 ≠ 𝐶 |
ftp.i | ⊢ 𝐵 ≠ 𝐶 |
Ref | Expression |
---|---|
ftp | ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftp.a | . . 3 ⊢ 𝐴 ∈ V | |
2 | ftp.b | . . 3 ⊢ 𝐵 ∈ V | |
3 | ftp.c | . . 3 ⊢ 𝐶 ∈ V | |
4 | 1, 2, 3 | 3pm3.2i 1339 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) |
5 | ftp.d | . . 3 ⊢ 𝑋 ∈ V | |
6 | ftp.e | . . 3 ⊢ 𝑌 ∈ V | |
7 | ftp.f | . . 3 ⊢ 𝑍 ∈ V | |
8 | 5, 6, 7 | 3pm3.2i 1339 | . 2 ⊢ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) |
9 | ftp.g | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
10 | ftp.h | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
11 | ftp.i | . . 3 ⊢ 𝐵 ≠ 𝐶 | |
12 | 9, 10, 11 | 3pm3.2i 1339 | . 2 ⊢ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) |
13 | ftpg 7190 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}) | |
14 | 4, 8, 12, 13 | mp3an 1461 | 1 ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 {ctp 4652 〈cop 4654 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: rabren3dioph 42771 nnsum4primesodd 47670 nnsum4primesoddALTV 47671 |
Copyright terms: Public domain | W3C validator |