![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftp | Structured version Visualization version GIF version |
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.) |
Ref | Expression |
---|---|
ftp.a | ⊢ 𝐴 ∈ V |
ftp.b | ⊢ 𝐵 ∈ V |
ftp.c | ⊢ 𝐶 ∈ V |
ftp.d | ⊢ 𝑋 ∈ V |
ftp.e | ⊢ 𝑌 ∈ V |
ftp.f | ⊢ 𝑍 ∈ V |
ftp.g | ⊢ 𝐴 ≠ 𝐵 |
ftp.h | ⊢ 𝐴 ≠ 𝐶 |
ftp.i | ⊢ 𝐵 ≠ 𝐶 |
Ref | Expression |
---|---|
ftp | ⊢ {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftp.a | . . 3 ⊢ 𝐴 ∈ V | |
2 | ftp.b | . . 3 ⊢ 𝐵 ∈ V | |
3 | ftp.c | . . 3 ⊢ 𝐶 ∈ V | |
4 | 1, 2, 3 | 3pm3.2i 1339 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) |
5 | ftp.d | . . 3 ⊢ 𝑋 ∈ V | |
6 | ftp.e | . . 3 ⊢ 𝑌 ∈ V | |
7 | ftp.f | . . 3 ⊢ 𝑍 ∈ V | |
8 | 5, 6, 7 | 3pm3.2i 1339 | . 2 ⊢ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) |
9 | ftp.g | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
10 | ftp.h | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
11 | ftp.i | . . 3 ⊢ 𝐵 ≠ 𝐶 | |
12 | 9, 10, 11 | 3pm3.2i 1339 | . 2 ⊢ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) |
13 | ftpg 7150 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}) | |
14 | 4, 8, 12, 13 | mp3an 1461 | 1 ⊢ {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 {ctp 4631 ⟨cop 4633 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 |
This theorem is referenced by: rabren3dioph 41538 nnsum4primesodd 46450 nnsum4primesoddALTV 46451 |
Copyright terms: Public domain | W3C validator |