MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnressn Structured version   Visualization version   GIF version

Theorem fnressn 7158
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fnressn ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})

Proof of Theorem fnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4638 . . . . . 6 (𝑥 = 𝐵 → {𝑥} = {𝐵})
21reseq2d 5981 . . . . 5 (𝑥 = 𝐵 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐵}))
3 fveq2 6891 . . . . . . 7 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
4 opeq12 4875 . . . . . . 7 ((𝑥 = 𝐵 ∧ (𝐹𝑥) = (𝐹𝐵)) → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
53, 4mpdan 684 . . . . . 6 (𝑥 = 𝐵 → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
65sneqd 4640 . . . . 5 (𝑥 = 𝐵 → {⟨𝑥, (𝐹𝑥)⟩} = {⟨𝐵, (𝐹𝐵)⟩})
72, 6eqeq12d 2747 . . . 4 (𝑥 = 𝐵 → ((𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩} ↔ (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩}))
87imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐹 Fn 𝐴 → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}) ↔ (𝐹 Fn 𝐴 → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})))
9 vex 3477 . . . . . . 7 𝑥 ∈ V
109snss 4789 . . . . . 6 (𝑥𝐴 ↔ {𝑥} ⊆ 𝐴)
11 fnssres 6673 . . . . . 6 ((𝐹 Fn 𝐴 ∧ {𝑥} ⊆ 𝐴) → (𝐹 ↾ {𝑥}) Fn {𝑥})
1210, 11sylan2b 593 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) Fn {𝑥})
13 dffn2 6719 . . . . . 6 ((𝐹 ↾ {𝑥}) Fn {𝑥} ↔ (𝐹 ↾ {𝑥}):{𝑥}⟶V)
149fsn2 7136 . . . . . 6 ((𝐹 ↾ {𝑥}):{𝑥}⟶V ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
15 fvex 6904 . . . . . . . 8 ((𝐹 ↾ {𝑥})‘𝑥) ∈ V
1615biantrur 530 . . . . . . 7 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
17 vsnid 4665 . . . . . . . . . . 11 𝑥 ∈ {𝑥}
18 fvres 6910 . . . . . . . . . . 11 (𝑥 ∈ {𝑥} → ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥))
1917, 18ax-mp 5 . . . . . . . . . 10 ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥)
2019opeq2i 4877 . . . . . . . . 9 𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩ = ⟨𝑥, (𝐹𝑥)⟩
2120sneqi 4639 . . . . . . . 8 {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} = {⟨𝑥, (𝐹𝑥)⟩}
2221eqeq2i 2744 . . . . . . 7 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
2316, 22bitr3i 277 . . . . . 6 ((((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}) ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
2413, 14, 233bitri 297 . . . . 5 ((𝐹 ↾ {𝑥}) Fn {𝑥} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
2512, 24sylib 217 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
2625expcom 413 . . 3 (𝑥𝐴 → (𝐹 Fn 𝐴 → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}))
278, 26vtoclga 3566 . 2 (𝐵𝐴 → (𝐹 Fn 𝐴 → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩}))
2827impcom 407 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  wss 3948  {csn 4628  cop 4634  cres 5678   Fn wfn 6538  wf 6539  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by:  funressn  7159  fressnfv  7160  fnsnsplit  7184  canthp1lem2  10651  fseq1p1m1  13580  resunimafz0  14409  dprd2da  19954  dmdprdpr  19961  dprdpr  19962  dpjlem  19963  pgpfaclem1  19993  islindf4  21613  xpstopnlem1  23534  ptcmpfi  23538  nosupbnd2lem1  27455  noinfbnd2lem1  27470  gsumhashmul  32479  subfacp1lem5  34474  cvmliftlem10  34584  poimirlem9  36801
  Copyright terms: Public domain W3C validator