MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnressn Structured version   Visualization version   GIF version

Theorem fnressn 7133
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fnressn ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})

Proof of Theorem fnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4602 . . . . . 6 (𝑥 = 𝐵 → {𝑥} = {𝐵})
21reseq2d 5953 . . . . 5 (𝑥 = 𝐵 → (𝐹 ↾ {𝑥}) = (𝐹 ↾ {𝐵}))
3 fveq2 6861 . . . . . . 7 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
4 opeq12 4842 . . . . . . 7 ((𝑥 = 𝐵 ∧ (𝐹𝑥) = (𝐹𝐵)) → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
53, 4mpdan 687 . . . . . 6 (𝑥 = 𝐵 → ⟨𝑥, (𝐹𝑥)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
65sneqd 4604 . . . . 5 (𝑥 = 𝐵 → {⟨𝑥, (𝐹𝑥)⟩} = {⟨𝐵, (𝐹𝐵)⟩})
72, 6eqeq12d 2746 . . . 4 (𝑥 = 𝐵 → ((𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩} ↔ (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩}))
87imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐹 Fn 𝐴 → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}) ↔ (𝐹 Fn 𝐴 → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})))
9 vex 3454 . . . . . . 7 𝑥 ∈ V
109snss 4752 . . . . . 6 (𝑥𝐴 ↔ {𝑥} ⊆ 𝐴)
11 fnssres 6644 . . . . . 6 ((𝐹 Fn 𝐴 ∧ {𝑥} ⊆ 𝐴) → (𝐹 ↾ {𝑥}) Fn {𝑥})
1210, 11sylan2b 594 . . . . 5 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) Fn {𝑥})
13 dffn2 6693 . . . . . 6 ((𝐹 ↾ {𝑥}) Fn {𝑥} ↔ (𝐹 ↾ {𝑥}):{𝑥}⟶V)
149fsn2 7111 . . . . . 6 ((𝐹 ↾ {𝑥}):{𝑥}⟶V ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
15 fvex 6874 . . . . . . . 8 ((𝐹 ↾ {𝑥})‘𝑥) ∈ V
1615biantrur 530 . . . . . . 7 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}))
17 vsnid 4630 . . . . . . . . . . 11 𝑥 ∈ {𝑥}
18 fvres 6880 . . . . . . . . . . 11 (𝑥 ∈ {𝑥} → ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥))
1917, 18ax-mp 5 . . . . . . . . . 10 ((𝐹 ↾ {𝑥})‘𝑥) = (𝐹𝑥)
2019opeq2i 4844 . . . . . . . . 9 𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩ = ⟨𝑥, (𝐹𝑥)⟩
2120sneqi 4603 . . . . . . . 8 {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} = {⟨𝑥, (𝐹𝑥)⟩}
2221eqeq2i 2743 . . . . . . 7 ((𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
2316, 22bitr3i 277 . . . . . 6 ((((𝐹 ↾ {𝑥})‘𝑥) ∈ V ∧ (𝐹 ↾ {𝑥}) = {⟨𝑥, ((𝐹 ↾ {𝑥})‘𝑥)⟩}) ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
2413, 14, 233bitri 297 . . . . 5 ((𝐹 ↾ {𝑥}) Fn {𝑥} ↔ (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
2512, 24sylib 218 . . . 4 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
2625expcom 413 . . 3 (𝑥𝐴 → (𝐹 Fn 𝐴 → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩}))
278, 26vtoclga 3546 . 2 (𝐵𝐴 → (𝐹 Fn 𝐴 → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩}))
2827impcom 407 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  {csn 4592  cop 4598  cres 5643   Fn wfn 6509  wf 6510  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  funressn  7134  fressnfv  7135  fnsnsplit  7161  canthp1lem2  10613  fseq1p1m1  13566  resunimafz0  14417  dprd2da  19981  dmdprdpr  19988  dprdpr  19989  dpjlem  19990  pgpfaclem1  20020  islindf4  21754  xpstopnlem1  23703  ptcmpfi  23707  nosupbnd2lem1  27634  noinfbnd2lem1  27649  gsumhashmul  33008  subfacp1lem5  35178  cvmliftlem10  35288  poimirlem9  37630
  Copyright terms: Public domain W3C validator