Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucof21 Structured version   Visualization version   GIF version

Theorem fucof21 49242
Description: The morphism part of the functor composition bifunctor maps a hom-set of the product category into a set of natural transformations. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fucof21.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucof21.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucof21.j 𝐽 = (Hom ‘𝑇)
fucof21.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
fucof21.u (𝜑𝑈𝑊)
fucof21.v (𝜑𝑉𝑊)
Assertion
Ref Expression
fucof21 (𝜑 → (𝑈𝑃𝑉):(𝑈𝐽𝑉)⟶((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))

Proof of Theorem fucof21
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucof21.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fucof21.w . . . . 5 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
3 fucof21.u . . . . 5 (𝜑𝑈𝑊)
4 relfunc 17830 . . . . 5 Rel (𝐷 Func 𝐸)
5 relfunc 17830 . . . . 5 Rel (𝐶 Func 𝐷)
62, 3, 4, 5fuco2eld3 49210 . . . 4 (𝜑 → ((1st ‘(1st𝑈))(𝐷 Func 𝐸)(2nd ‘(1st𝑈)) ∧ (1st ‘(2nd𝑈))(𝐶 Func 𝐷)(2nd ‘(2nd𝑈))))
76simprd 495 . . 3 (𝜑 → (1st ‘(2nd𝑈))(𝐶 Func 𝐷)(2nd ‘(2nd𝑈)))
86simpld 494 . . 3 (𝜑 → (1st ‘(1st𝑈))(𝐷 Func 𝐸)(2nd ‘(1st𝑈)))
92, 3, 4, 5fuco2eld2 49209 . . 3 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
10 fucof21.v . . . . 5 (𝜑𝑉𝑊)
112, 10, 4, 5fuco2eld3 49210 . . . 4 (𝜑 → ((1st ‘(1st𝑉))(𝐷 Func 𝐸)(2nd ‘(1st𝑉)) ∧ (1st ‘(2nd𝑉))(𝐶 Func 𝐷)(2nd ‘(2nd𝑉))))
1211simprd 495 . . 3 (𝜑 → (1st ‘(2nd𝑉))(𝐶 Func 𝐷)(2nd ‘(2nd𝑉)))
1311simpld 494 . . 3 (𝜑 → (1st ‘(1st𝑉))(𝐷 Func 𝐸)(2nd ‘(1st𝑉)))
142, 10, 4, 5fuco2eld2 49209 . . 3 (𝜑𝑉 = ⟨⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩, ⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩⟩)
151, 7, 8, 9, 12, 13, 14fuco21 49231 . 2 (𝜑 → (𝑈𝑃𝑉) = (𝑏 ∈ (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩), 𝑎 ∈ (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘((1st ‘(2nd𝑉))‘𝑥))(⟨((1st ‘(1st𝑈))‘((1st ‘(2nd𝑈))‘𝑥)), ((1st ‘(1st𝑈))‘((1st ‘(2nd𝑉))‘𝑥))⟩(comp‘𝐸)((1st ‘(1st𝑉))‘((1st ‘(2nd𝑉))‘𝑥)))((((1st ‘(2nd𝑈))‘𝑥)(2nd ‘(1st𝑈))((1st ‘(2nd𝑉))‘𝑥))‘(𝑎𝑥))))))
161adantr 480 . . . 4 ((𝜑 ∧ (𝑏 ∈ (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩) ∧ 𝑎 ∈ (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩))) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
179adantr 480 . . . 4 ((𝜑 ∧ (𝑏 ∈ (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩) ∧ 𝑎 ∈ (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩))) → 𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
1814adantr 480 . . . 4 ((𝜑 ∧ (𝑏 ∈ (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩) ∧ 𝑎 ∈ (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩))) → 𝑉 = ⟨⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩, ⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩⟩)
19 simprr 772 . . . 4 ((𝜑 ∧ (𝑏 ∈ (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩) ∧ 𝑎 ∈ (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩))) → 𝑎 ∈ (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩))
20 simprl 770 . . . 4 ((𝜑 ∧ (𝑏 ∈ (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩) ∧ 𝑎 ∈ (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩))) → 𝑏 ∈ (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩))
2116, 17, 18, 19, 20fuco22 49234 . . 3 ((𝜑 ∧ (𝑏 ∈ (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩) ∧ 𝑎 ∈ (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩))) → (𝑏(𝑈𝑃𝑉)𝑎) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘((1st ‘(2nd𝑉))‘𝑥))(⟨((1st ‘(1st𝑈))‘((1st ‘(2nd𝑈))‘𝑥)), ((1st ‘(1st𝑈))‘((1st ‘(2nd𝑉))‘𝑥))⟩(comp‘𝐸)((1st ‘(1st𝑉))‘((1st ‘(2nd𝑉))‘𝑥)))((((1st ‘(2nd𝑈))‘𝑥)(2nd ‘(1st𝑈))((1st ‘(2nd𝑉))‘𝑥))‘(𝑎𝑥)))))
2216, 19, 20, 17, 18fuco22nat 49241 . . 3 ((𝜑 ∧ (𝑏 ∈ (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩) ∧ 𝑎 ∈ (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩))) → (𝑏(𝑈𝑃𝑉)𝑎) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
2321, 22eqeltrrd 2830 . 2 ((𝜑 ∧ (𝑏 ∈ (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩) ∧ 𝑎 ∈ (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩))) → (𝑥 ∈ (Base‘𝐶) ↦ ((𝑏‘((1st ‘(2nd𝑉))‘𝑥))(⟨((1st ‘(1st𝑈))‘((1st ‘(2nd𝑈))‘𝑥)), ((1st ‘(1st𝑈))‘((1st ‘(2nd𝑉))‘𝑥))⟩(comp‘𝐸)((1st ‘(1st𝑉))‘((1st ‘(2nd𝑉))‘𝑥)))((((1st ‘(2nd𝑈))‘𝑥)(2nd ‘(1st𝑈))((1st ‘(2nd𝑉))‘𝑥))‘(𝑎𝑥)))) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
24 fucof21.t . . . 4 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
2524xpcfucbas 49153 . . . 4 ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) = (Base‘𝑇)
26 fucof21.j . . . 4 𝐽 = (Hom ‘𝑇)
273, 2eleqtrd 2831 . . . 4 (𝜑𝑈 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2810, 2eleqtrd 2831 . . . 4 (𝜑𝑉 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
2924, 25, 26, 27, 28xpcfuchom 49155 . . 3 (𝜑 → (𝑈𝐽𝑉) = (((1st𝑈)(𝐷 Nat 𝐸)(1st𝑉)) × ((2nd𝑈)(𝐶 Nat 𝐷)(2nd𝑉))))
309fveq2d 6869 . . . . . 6 (𝜑 → (1st𝑈) = (1st ‘⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩))
31 opex 5432 . . . . . . 7 ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩ ∈ V
32 opex 5432 . . . . . . 7 ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩ ∈ V
3331, 32op1st 7985 . . . . . 6 (1st ‘⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩
3430, 33eqtrdi 2781 . . . . 5 (𝜑 → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
3514fveq2d 6869 . . . . . 6 (𝜑 → (1st𝑉) = (1st ‘⟨⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩, ⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩⟩))
36 opex 5432 . . . . . . 7 ⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩ ∈ V
37 opex 5432 . . . . . . 7 ⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩ ∈ V
3836, 37op1st 7985 . . . . . 6 (1st ‘⟨⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩, ⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩⟩) = ⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩
3935, 38eqtrdi 2781 . . . . 5 (𝜑 → (1st𝑉) = ⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩)
4034, 39oveq12d 7412 . . . 4 (𝜑 → ((1st𝑈)(𝐷 Nat 𝐸)(1st𝑉)) = (⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩))
419fveq2d 6869 . . . . . 6 (𝜑 → (2nd𝑈) = (2nd ‘⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩))
4231, 32op2nd 7986 . . . . . 6 (2nd ‘⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩) = ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩
4341, 42eqtrdi 2781 . . . . 5 (𝜑 → (2nd𝑈) = ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩)
4414fveq2d 6869 . . . . . 6 (𝜑 → (2nd𝑉) = (2nd ‘⟨⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩, ⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩⟩))
4536, 37op2nd 7986 . . . . . 6 (2nd ‘⟨⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩, ⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩⟩) = ⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩
4644, 45eqtrdi 2781 . . . . 5 (𝜑 → (2nd𝑉) = ⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩)
4743, 46oveq12d 7412 . . . 4 (𝜑 → ((2nd𝑈)(𝐶 Nat 𝐷)(2nd𝑉)) = (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩))
4840, 47xpeq12d 5677 . . 3 (𝜑 → (((1st𝑈)(𝐷 Nat 𝐸)(1st𝑉)) × ((2nd𝑈)(𝐶 Nat 𝐷)(2nd𝑉))) = ((⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩) × (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩)))
4929, 48eqtrd 2765 . 2 (𝜑 → (𝑈𝐽𝑉) = ((⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩(𝐷 Nat 𝐸)⟨(1st ‘(1st𝑉)), (2nd ‘(1st𝑉))⟩) × (⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩(𝐶 Nat 𝐷)⟨(1st ‘(2nd𝑉)), (2nd ‘(2nd𝑉))⟩)))
5015, 23, 49fmpodg 48786 1 (𝜑 → (𝑈𝑃𝑉):(𝑈𝐽𝑉)⟶((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4603   class class class wbr 5115  cmpt 5196   × cxp 5644  wf 6515  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  Hom chom 17237  compcco 17238   Func cfunc 17822   Nat cnat 17912   FuncCat cfuc 17913   ×c cxpc 18135  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-fz 13482  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-nat 17914  df-fuc 17915  df-xpc 18139  df-fuco 49212
This theorem is referenced by:  fucofunc  49254
  Copyright terms: Public domain W3C validator