Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fun11uni | Structured version Visualization version GIF version |
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.) |
Ref | Expression |
---|---|
fun11uni | ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ∪ 𝐴 ∧ Fun ◡∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((Fun 𝑓 ∧ Fun ◡𝑓) → Fun 𝑓) | |
2 | 1 | anim1i 614 | . . . 4 ⊢ (((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun 𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓))) |
3 | 2 | ralimi 3086 | . . 3 ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → ∀𝑓 ∈ 𝐴 (Fun 𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓))) |
4 | fununi 6493 | . . 3 ⊢ (∀𝑓 ∈ 𝐴 (Fun 𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ∪ 𝐴) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ∪ 𝐴) |
6 | simpr 484 | . . . . 5 ⊢ ((Fun 𝑓 ∧ Fun ◡𝑓) → Fun ◡𝑓) | |
7 | 6 | anim1i 614 | . . . 4 ⊢ (((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓))) |
8 | 7 | ralimi 3086 | . . 3 ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → ∀𝑓 ∈ 𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓))) |
9 | funcnvuni 7752 | . . 3 ⊢ (∀𝑓 ∈ 𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ◡∪ 𝐴) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ◡∪ 𝐴) |
11 | 5, 10 | jca 511 | 1 ⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ∪ 𝐴 ∧ Fun ◡∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∀wral 3063 ⊆ wss 3883 ∪ cuni 4836 ◡ccnv 5579 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 |
This theorem is referenced by: f1iun 7760 |
Copyright terms: Public domain | W3C validator |