| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version | ||
| Description: A function with bounded domain and codomain is a set. This version of fex 7182 is proven without the Axiom of Replacement ax-rep 5229, but depends on ax-un 7691, which is not required for the proof of fex 7182. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7706 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| 3 | fssxp 6697 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
| 5 | 2, 4 | ssexd 5274 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 × cxp 5629 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: elmapg 8789 f1oen2g 8917 f1dom2g 8918 dom3d 8942 domssex2 9078 domssex 9079 mapxpen 9084 oismo 9469 wdomima2g 9515 dfac8clem 9961 acni2 9975 acnlem 9977 dfac4 10051 dfac2a 10059 axdc2lem 10377 axdc4lem 10384 axcclem 10386 mpoaddex 12923 addex 12924 mpomulex 12925 mulex 12926 seqf1olem2 13983 seqf1o 13984 limsuple 15420 limsuplt 15421 limsupbnd1 15424 caucvgrlem 15615 prdsplusg 17397 prdsmulr 17398 prdsvsca 17399 prdshom 17406 gsumval 18580 frmdplusg 18757 isghm 19123 odinf 19469 staffval 20726 cnfldcj 21249 cnfldds 21252 cnfldcjOLD 21262 cnflddsOLD 21265 xrsadd 21272 xrsmul 21273 xrsds 21302 ocvfval 21551 cnpfval 23097 iscnp2 23102 fmf 23808 tsmsval 23994 blfvalps 24247 nmfval 24452 tngnm 24515 tngngp2 24516 tngngpd 24517 tngngp 24518 nmoffn 24575 nmofval 24578 ishtpy 24847 tcphex 25093 elno 27533 adjeu 31791 ismeas 34162 isismty 37768 rrnval 37794 subex 42208 absex 42209 cjex 42210 sn-isghm 42634 |
| Copyright terms: Public domain | W3C validator |