| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version | ||
| Description: A function with bounded domain and codomain is a set. This version of fex 7200 is proven without the Axiom of Replacement ax-rep 5234, but depends on ax-un 7711, which is not required for the proof of fex 7200. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7726 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| 3 | fssxp 6715 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
| 5 | 2, 4 | ssexd 5279 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 × cxp 5636 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: elmapg 8812 f1oen2g 8940 f1dom2g 8941 dom3d 8965 domssex2 9101 domssex 9102 mapxpen 9107 oismo 9493 wdomima2g 9539 dfac8clem 9985 acni2 9999 acnlem 10001 dfac4 10075 dfac2a 10083 axdc2lem 10401 axdc4lem 10408 axcclem 10410 mpoaddex 12947 addex 12948 mpomulex 12949 mulex 12950 seqf1olem2 14007 seqf1o 14008 limsuple 15444 limsuplt 15445 limsupbnd1 15448 caucvgrlem 15639 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 prdshom 17430 gsumval 18604 frmdplusg 18781 isghm 19147 odinf 19493 staffval 20750 cnfldcj 21273 cnfldds 21276 cnfldcjOLD 21286 cnflddsOLD 21289 xrsadd 21296 xrsmul 21297 xrsds 21326 ocvfval 21575 cnpfval 23121 iscnp2 23126 fmf 23832 tsmsval 24018 blfvalps 24271 nmfval 24476 tngnm 24539 tngngp2 24540 tngngpd 24541 tngngp 24542 nmoffn 24599 nmofval 24602 ishtpy 24871 tcphex 25117 elno 27557 adjeu 31818 ismeas 34189 isismty 37795 rrnval 37821 subex 42235 absex 42236 cjex 42237 sn-isghm 42661 |
| Copyright terms: Public domain | W3C validator |