![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version |
Description: A function with bounded domain and codomain is a set. This version of fex 7230 is proven without the Axiom of Replacement ax-rep 5285, but depends on ax-un 7727, which is not required for the proof of fex 7230. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7739 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
3 | fssxp 6745 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
5 | 2, 4 | ssexd 5324 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 × cxp 5674 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: elmapg 8835 f1oen2g 8966 f1dom2g 8967 f1dom2gOLD 8968 dom3d 8992 domssex2 9139 domssex 9140 mapxpen 9145 oismo 9537 wdomima2g 9583 dfac8clem 10029 acni2 10043 acnlem 10045 dfac4 10119 dfac2a 10126 axdc2lem 10445 axdc4lem 10452 axcclem 10454 addex 12974 mulex 12975 seqf1olem2 14010 seqf1o 14011 limsuple 15424 limsuplt 15425 limsupbnd1 15428 caucvgrlem 15621 prdsplusg 17406 prdsmulr 17407 prdsvsca 17408 prdshom 17415 gsumval 18598 frmdplusg 18737 odinf 19433 staffval 20459 cnfldcj 20957 cnfldds 20960 xrsadd 20968 xrsmul 20969 xrsds 20994 ocvfval 21225 cnpfval 22745 iscnp2 22750 fmf 23456 tsmsval 23642 blfvalps 23896 nmfval 24104 tngnm 24175 tngngp2 24176 tngngpd 24177 tngngp 24178 nmoffn 24235 nmofval 24238 ishtpy 24495 tcphex 24741 adjeu 31180 ismeas 33266 mpomulex 35236 mpoaddex 35261 gg-cnfldcj 35267 gg-cnfldds 35270 isismty 36761 rrnval 36787 |
Copyright terms: Public domain | W3C validator |