Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version |
Description: A function with bounded domain and range is a set. This version of fex 6986 is proven without the Axiom of Replacement ax-rep 5160, but depends on ax-un 7465, which is not required for the proof of fex 6986. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7477 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
2 | 1 | 3adant1 1127 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
3 | fssxp 6524 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
4 | 3 | 3ad2ant1 1130 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
5 | 2, 4 | ssexd 5198 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 × cxp 5526 ⟶wf 6336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-xp 5534 df-rel 5535 df-cnv 5536 df-dm 5538 df-rn 5539 df-fun 6342 df-fn 6343 df-f 6344 |
This theorem is referenced by: elmapg 8435 f1oen2g 8557 f1dom2g 8558 dom3d 8582 domssex2 8712 domssex 8713 mapxpen 8718 oismo 9050 wdomima2g 9096 ixpiunwdom 9100 dfac8clem 9505 acni2 9519 acnlem 9521 dfac4 9595 dfac2a 9602 axdc2lem 9921 axdc4lem 9928 axcclem 9930 addex 12441 mulex 12442 seqf1olem2 13473 seqf1o 13474 limsuple 14896 limsuplt 14897 limsupbnd1 14900 caucvgrlem 15090 prdsval 16799 prdsplusg 16802 prdsmulr 16803 prdsvsca 16804 prdshom 16811 gsumval 17966 frmdplusg 18098 odinf 18770 efgtf 18928 gsumval3lem1 19106 gsumval3 19108 staffval 19699 cnfldcj 20186 cnfldds 20189 xrsadd 20196 xrsmul 20197 xrsds 20222 ocvfval 20444 cnpfval 21947 iscnp2 21952 txcn 22339 fmval 22656 fmf 22658 tsmsval 22844 tsmsadd 22860 blfvalps 23098 nmfval 23303 tngnm 23366 tngngp2 23367 tngngpd 23368 tngngp 23369 nmoffn 23426 nmofval 23429 ishtpy 23686 tcphex 23930 adjeu 29784 ismeas 31698 hgt750lemg 32165 isismty 35553 rrnval 35579 |
Copyright terms: Public domain | W3C validator |