Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version |
Description: A function with bounded domain and range is a set. This version of fex 7084 is proven without the Axiom of Replacement ax-rep 5205, but depends on ax-un 7566, which is not required for the proof of fex 7084. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7578 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
2 | 1 | 3adant1 1128 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
3 | fssxp 6612 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
4 | 3 | 3ad2ant1 1131 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
5 | 2, 4 | ssexd 5243 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 × cxp 5578 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: elmapg 8586 f1oen2g 8711 f1dom2g 8712 f1dom2gOLD 8713 dom3d 8737 domssex2 8873 domssex 8874 mapxpen 8879 oismo 9229 wdomima2g 9275 dfac8clem 9719 acni2 9733 acnlem 9735 dfac4 9809 dfac2a 9816 axdc2lem 10135 axdc4lem 10142 axcclem 10144 addex 12657 mulex 12658 seqf1olem2 13691 seqf1o 13692 limsuple 15115 limsuplt 15116 limsupbnd1 15119 caucvgrlem 15312 prdsplusg 17086 prdsmulr 17087 prdsvsca 17088 prdshom 17095 gsumval 18276 frmdplusg 18408 odinf 19085 staffval 20022 cnfldcj 20517 cnfldds 20520 xrsadd 20527 xrsmul 20528 xrsds 20553 ocvfval 20783 cnpfval 22293 iscnp2 22298 fmf 23004 tsmsval 23190 blfvalps 23444 nmfval 23650 tngnm 23721 tngngp2 23722 tngngpd 23723 tngngp 23724 nmoffn 23781 nmofval 23784 ishtpy 24041 tcphex 24286 adjeu 30152 ismeas 32067 isismty 35886 rrnval 35912 |
Copyright terms: Public domain | W3C validator |