| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version | ||
| Description: A function with bounded domain and codomain is a set. This version of fex 7162 is proven without the Axiom of Replacement ax-rep 5218, but depends on ax-un 7671, which is not required for the proof of fex 7162. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7686 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| 3 | fssxp 6679 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
| 5 | 2, 4 | ssexd 5263 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 × cxp 5617 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-fun 6484 df-fn 6485 df-f 6486 |
| This theorem is referenced by: elmapg 8766 f1oen2g 8894 f1dom2g 8895 dom3d 8919 domssex2 9054 domssex 9055 mapxpen 9060 oismo 9432 wdomima2g 9478 dfac8clem 9926 acni2 9940 acnlem 9942 dfac4 10016 dfac2a 10024 axdc2lem 10342 axdc4lem 10349 axcclem 10351 mpoaddex 12889 addex 12890 mpomulex 12891 mulex 12892 seqf1olem2 13949 seqf1o 13950 limsuple 15385 limsuplt 15386 limsupbnd1 15389 caucvgrlem 15580 prdsplusg 17362 prdsmulr 17363 prdsvsca 17364 prdshom 17371 gsumval 18551 frmdplusg 18728 isghm 19094 odinf 19442 staffval 20726 cnfldcj 21270 cnfldds 21273 cnfldcjOLD 21283 cnflddsOLD 21286 xrsadd 21292 xrsmul 21293 xrsds 21316 ocvfval 21573 cnpfval 23119 iscnp2 23124 fmf 23830 tsmsval 24016 blfvalps 24269 nmfval 24474 tngnm 24537 tngngp2 24538 tngngpd 24539 tngngp 24540 nmoffn 24597 nmofval 24600 ishtpy 24869 tcphex 25115 elno 27555 adjeu 31833 ismeas 34166 isismty 37781 rrnval 37807 subex 42220 absex 42221 cjex 42222 sn-isghm 42646 |
| Copyright terms: Public domain | W3C validator |