| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version | ||
| Description: A function with bounded domain and codomain is a set. This version of fex 7155 is proven without the Axiom of Replacement ax-rep 5212, but depends on ax-un 7663, which is not required for the proof of fex 7155. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7678 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| 3 | fssxp 6673 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
| 5 | 2, 4 | ssexd 5257 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 × cxp 5609 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-f 6480 |
| This theorem is referenced by: elmapg 8758 f1oen2g 8886 f1dom2g 8887 dom3d 8911 domssex2 9045 domssex 9046 mapxpen 9051 oismo 9421 wdomima2g 9467 dfac8clem 9918 acni2 9932 acnlem 9934 dfac4 10008 dfac2a 10016 axdc2lem 10334 axdc4lem 10341 axcclem 10343 mpoaddex 12881 addex 12882 mpomulex 12883 mulex 12884 seqf1olem2 13944 seqf1o 13945 limsuple 15380 limsuplt 15381 limsupbnd1 15384 caucvgrlem 15575 prdsplusg 17357 prdsmulr 17358 prdsvsca 17359 prdshom 17366 gsumval 18580 frmdplusg 18757 isghm 19122 odinf 19470 staffval 20751 cnfldcj 21295 cnfldds 21298 cnfldcjOLD 21308 cnflddsOLD 21311 xrsadd 21317 xrsmul 21318 xrsds 21341 ocvfval 21598 cnpfval 23144 iscnp2 23149 fmf 23855 tsmsval 24041 blfvalps 24293 nmfval 24498 tngnm 24561 tngngp2 24562 tngngpd 24563 tngngp 24564 nmoffn 24621 nmofval 24624 ishtpy 24893 tcphex 25139 elno 27579 adjeu 31861 ismeas 34204 isismty 37841 rrnval 37867 subex 42280 absex 42281 cjex 42282 sn-isghm 42706 |
| Copyright terms: Public domain | W3C validator |