![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version |
Description: A function with bounded domain and codomain is a set. This version of fex 7245 is proven without the Axiom of Replacement ax-rep 5284, but depends on ax-un 7753, which is not required for the proof of fex 7245. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7768 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
2 | 1 | 3adant1 1129 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
3 | fssxp 6763 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
4 | 3 | 3ad2ant1 1132 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
5 | 2, 4 | ssexd 5329 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 × cxp 5686 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-dm 5698 df-rn 5699 df-fun 6564 df-fn 6565 df-f 6566 |
This theorem is referenced by: elmapg 8877 f1oen2g 9007 f1dom2g 9008 dom3d 9032 domssex2 9175 domssex 9176 mapxpen 9181 oismo 9577 wdomima2g 9623 dfac8clem 10069 acni2 10083 acnlem 10085 dfac4 10159 dfac2a 10167 axdc2lem 10485 axdc4lem 10492 axcclem 10494 mpoaddex 13027 addex 13028 mpomulex 13029 mulex 13030 seqf1olem2 14079 seqf1o 14080 limsuple 15510 limsuplt 15511 limsupbnd1 15514 caucvgrlem 15705 prdsplusg 17504 prdsmulr 17505 prdsvsca 17506 prdshom 17513 gsumval 18702 frmdplusg 18879 isghm 19245 odinf 19595 staffval 20858 cnfldcj 21390 cnfldds 21393 cnfldcjOLD 21403 cnflddsOLD 21406 xrsadd 21414 xrsmul 21415 xrsds 21444 ocvfval 21701 cnpfval 23257 iscnp2 23262 fmf 23968 tsmsval 24154 blfvalps 24408 nmfval 24616 tngnm 24687 tngngp2 24688 tngngpd 24689 tngngp 24690 nmoffn 24747 nmofval 24750 ishtpy 25017 tcphex 25264 elno 27704 adjeu 31917 ismeas 34179 isismty 37787 rrnval 37813 subex 42266 absex 42267 cjex 42268 sn-isghm 42659 |
Copyright terms: Public domain | W3C validator |