| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version | ||
| Description: A function with bounded domain and codomain is a set. This version of fex 7217 is proven without the Axiom of Replacement ax-rep 5249, but depends on ax-un 7727, which is not required for the proof of fex 7217. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7742 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| 3 | fssxp 6732 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
| 5 | 2, 4 | ssexd 5294 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 × cxp 5652 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: elmapg 8851 f1oen2g 8981 f1dom2g 8982 dom3d 9006 domssex2 9149 domssex 9150 mapxpen 9155 oismo 9552 wdomima2g 9598 dfac8clem 10044 acni2 10058 acnlem 10060 dfac4 10134 dfac2a 10142 axdc2lem 10460 axdc4lem 10467 axcclem 10469 mpoaddex 13002 addex 13003 mpomulex 13004 mulex 13005 seqf1olem2 14058 seqf1o 14059 limsuple 15492 limsuplt 15493 limsupbnd1 15496 caucvgrlem 15687 prdsplusg 17470 prdsmulr 17471 prdsvsca 17472 prdshom 17479 gsumval 18653 frmdplusg 18830 isghm 19196 odinf 19542 staffval 20799 cnfldcj 21322 cnfldds 21325 cnfldcjOLD 21335 cnflddsOLD 21338 xrsadd 21345 xrsmul 21346 xrsds 21375 ocvfval 21624 cnpfval 23170 iscnp2 23175 fmf 23881 tsmsval 24067 blfvalps 24320 nmfval 24525 tngnm 24588 tngngp2 24589 tngngpd 24590 tngngp 24591 nmoffn 24648 nmofval 24651 ishtpy 24920 tcphex 25167 elno 27607 adjeu 31816 ismeas 34176 isismty 37771 rrnval 37797 subex 42245 absex 42246 cjex 42247 sn-isghm 42643 |
| Copyright terms: Public domain | W3C validator |