![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version |
Description: A function with bounded domain and codomain is a set. This version of fex 7263 is proven without the Axiom of Replacement ax-rep 5303, but depends on ax-un 7770, which is not required for the proof of fex 7263. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7785 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
3 | fssxp 6775 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
5 | 2, 4 | ssexd 5342 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 × cxp 5698 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: elmapg 8897 f1oen2g 9028 f1dom2g 9029 f1dom2gOLD 9030 dom3d 9054 domssex2 9203 domssex 9204 mapxpen 9209 oismo 9609 wdomima2g 9655 dfac8clem 10101 acni2 10115 acnlem 10117 dfac4 10191 dfac2a 10199 axdc2lem 10517 axdc4lem 10524 axcclem 10526 mpoaddex 13053 addex 13054 mpomulex 13055 mulex 13056 seqf1olem2 14093 seqf1o 14094 limsuple 15524 limsuplt 15525 limsupbnd1 15528 caucvgrlem 15721 prdsplusg 17518 prdsmulr 17519 prdsvsca 17520 prdshom 17527 gsumval 18715 frmdplusg 18889 isghm 19255 odinf 19605 staffval 20864 cnfldcj 21396 cnfldds 21399 cnfldcjOLD 21409 cnflddsOLD 21412 xrsadd 21420 xrsmul 21421 xrsds 21450 ocvfval 21707 cnpfval 23263 iscnp2 23268 fmf 23974 tsmsval 24160 blfvalps 24414 nmfval 24622 tngnm 24693 tngngp2 24694 tngngpd 24695 tngngp 24696 nmoffn 24753 nmofval 24756 ishtpy 25023 tcphex 25270 elno 27708 adjeu 31921 ismeas 34163 isismty 37761 rrnval 37787 subex 42242 absex 42243 cjex 42244 sn-isghm 42628 |
Copyright terms: Public domain | W3C validator |