| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version | ||
| Description: A function with bounded domain and codomain is a set. This version of fex 7203 is proven without the Axiom of Replacement ax-rep 5237, but depends on ax-un 7714, which is not required for the proof of fex 7203. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7729 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
| 3 | fssxp 6718 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
| 5 | 2, 4 | ssexd 5282 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 × cxp 5639 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: elmapg 8815 f1oen2g 8943 f1dom2g 8944 dom3d 8968 domssex2 9107 domssex 9108 mapxpen 9113 oismo 9500 wdomima2g 9546 dfac8clem 9992 acni2 10006 acnlem 10008 dfac4 10082 dfac2a 10090 axdc2lem 10408 axdc4lem 10415 axcclem 10417 mpoaddex 12954 addex 12955 mpomulex 12956 mulex 12957 seqf1olem2 14014 seqf1o 14015 limsuple 15451 limsuplt 15452 limsupbnd1 15455 caucvgrlem 15646 prdsplusg 17428 prdsmulr 17429 prdsvsca 17430 prdshom 17437 gsumval 18611 frmdplusg 18788 isghm 19154 odinf 19500 staffval 20757 cnfldcj 21280 cnfldds 21283 cnfldcjOLD 21293 cnflddsOLD 21296 xrsadd 21303 xrsmul 21304 xrsds 21333 ocvfval 21582 cnpfval 23128 iscnp2 23133 fmf 23839 tsmsval 24025 blfvalps 24278 nmfval 24483 tngnm 24546 tngngp2 24547 tngngpd 24548 tngngp 24549 nmoffn 24606 nmofval 24609 ishtpy 24878 tcphex 25124 elno 27564 adjeu 31825 ismeas 34196 isismty 37802 rrnval 37828 subex 42242 absex 42243 cjex 42244 sn-isghm 42668 |
| Copyright terms: Public domain | W3C validator |