| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version | ||
| Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
| Ref | Expression |
|---|---|
| funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
| 2 | funfn 6549 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 dom cdm 5641 Fun wfun 6508 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fn 6517 |
| This theorem is referenced by: fncofn 6638 resfunexg 7192 ralima 7214 funiunfv 7225 funelss 8029 funsssuppss 8172 frrlem4 8271 smores2 8326 tfrlem1 8347 resfnfinfin 9295 resfifsupp 9355 ordtypelem4 9481 ordtypelem9 9486 ordtypelem10 9487 brdom3 10488 brdom5 10489 brdom4 10490 fpwwe2lem10 10600 hashimarn 14412 resunimafz0 14417 isstruct2 17126 invf 17737 lindfrn 21737 psdmul 22060 ofco2 22345 dfac14 23512 perfdvf 25811 c1lip2 25910 taylf 26275 elno2 27573 noinfbnd2lem1 27649 noetainflem4 27659 lpvtx 29002 upgrle2 29039 uhgrvtxedgiedgb 29070 uhgr2edg 29142 ushgredgedg 29163 ushgredgedgloop 29165 subgruhgredgd 29218 subuhgr 29220 subupgr 29221 subumgr 29222 subusgr 29223 upgrres 29240 umgrres 29241 vtxdun 29416 upgrewlkle2 29541 eupthvdres 30171 cycpmfvlem 33076 cycpmfv3 33079 sitgf 34345 cardpred 35087 nummin 35088 bj-gabima 36935 gneispace 44130 gneispacef2 44132 funimaeq 45247 limsupresxr 45771 liminfresxr 45772 funcoressn 47047 isubgr0uhgr 47877 upgrimwlklem1 47901 |
| Copyright terms: Public domain | W3C validator |