Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version |
Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
Ref | Expression |
---|---|
funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
2 | funfn 6448 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 dom cdm 5580 Fun wfun 6412 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-fn 6421 |
This theorem is referenced by: fncofn 6532 resfunexg 7073 funiunfv 7103 funelss 7861 funsssuppss 7977 frrlem4 8076 wfrlem4OLD 8114 smores2 8156 tfrlem1 8178 resfnfinfin 9029 resfifsupp 9086 ordtypelem4 9210 ordtypelem9 9215 ordtypelem10 9216 brdom3 10215 brdom5 10216 brdom4 10217 fpwwe2lem10 10327 hashimarn 14083 resunimafz0 14085 isstruct2 16778 invf 17397 lindfrn 20938 ofco2 21508 dfac14 22677 perfdvf 24972 c1lip2 25067 taylf 25425 lpvtx 27341 upgrle2 27378 uhgrvtxedgiedgb 27409 uhgr2edg 27478 ushgredgedg 27499 ushgredgedgloop 27501 subgruhgredgd 27554 subuhgr 27556 subupgr 27557 subumgr 27558 subusgr 27559 upgrres 27576 umgrres 27577 vtxdun 27751 upgrewlkle2 27876 eupthvdres 28500 cycpmfvlem 31281 cycpmfv3 31284 sitgf 32214 cardpred 32962 nummin 32963 elno2 33784 noinfbnd2lem1 33860 noetainflem4 33870 bj-gabima 35055 gneispace 41633 gneispacef2 41635 funimaeq 42681 limsupresxr 43197 liminfresxr 43198 funcoressn 44423 |
Copyright terms: Public domain | W3C validator |