| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version | ||
| Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
| Ref | Expression |
|---|---|
| funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
| 2 | funfn 6516 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 dom cdm 5623 Fun wfun 6480 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6489 |
| This theorem is referenced by: fncofn 6603 resfunexg 7155 ralima 7177 funiunfv 7188 funelss 7989 funsssuppss 8130 frrlem4 8229 smores2 8284 tfrlem1 8305 resfnfinfin 9246 resfifsupp 9306 ordtypelem4 9432 ordtypelem9 9437 ordtypelem10 9438 brdom3 10441 brdom5 10442 brdom4 10443 fpwwe2lem10 10553 hashimarn 14365 resunimafz0 14370 isstruct2 17078 invf 17693 lindfrn 21746 psdmul 22069 ofco2 22354 dfac14 23521 perfdvf 25820 c1lip2 25919 taylf 26284 elno2 27582 noinfbnd2lem1 27658 noetainflem4 27668 lpvtx 29031 upgrle2 29068 uhgrvtxedgiedgb 29099 uhgr2edg 29171 ushgredgedg 29192 ushgredgedgloop 29194 subgruhgredgd 29247 subuhgr 29249 subupgr 29250 subumgr 29251 subusgr 29252 upgrres 29269 umgrres 29270 vtxdun 29445 upgrewlkle2 29570 eupthvdres 30197 cycpmfvlem 33067 cycpmfv3 33070 sitgf 34314 cardpred 35056 nummin 35057 bj-gabima 36913 gneispace 44107 gneispacef2 44109 funimaeq 45224 limsupresxr 45748 liminfresxr 45749 funcoressn 47027 isubgr0uhgr 47858 upgrimwlklem1 47882 |
| Copyright terms: Public domain | W3C validator |