| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version | ||
| Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
| Ref | Expression |
|---|---|
| funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
| 2 | funfn 6546 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 dom cdm 5638 Fun wfun 6505 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6514 |
| This theorem is referenced by: fncofn 6635 resfunexg 7189 ralima 7211 funiunfv 7222 funelss 8026 funsssuppss 8169 frrlem4 8268 smores2 8323 tfrlem1 8344 resfnfinfin 9288 resfifsupp 9348 ordtypelem4 9474 ordtypelem9 9479 ordtypelem10 9480 brdom3 10481 brdom5 10482 brdom4 10483 fpwwe2lem10 10593 hashimarn 14405 resunimafz0 14410 isstruct2 17119 invf 17730 lindfrn 21730 psdmul 22053 ofco2 22338 dfac14 23505 perfdvf 25804 c1lip2 25903 taylf 26268 elno2 27566 noinfbnd2lem1 27642 noetainflem4 27652 lpvtx 28995 upgrle2 29032 uhgrvtxedgiedgb 29063 uhgr2edg 29135 ushgredgedg 29156 ushgredgedgloop 29158 subgruhgredgd 29211 subuhgr 29213 subupgr 29214 subumgr 29215 subusgr 29216 upgrres 29233 umgrres 29234 vtxdun 29409 upgrewlkle2 29534 eupthvdres 30164 cycpmfvlem 33069 cycpmfv3 33072 sitgf 34338 cardpred 35080 nummin 35081 bj-gabima 36928 gneispace 44123 gneispacef2 44125 funimaeq 45240 limsupresxr 45764 liminfresxr 45765 funcoressn 47043 isubgr0uhgr 47873 upgrimwlklem1 47897 |
| Copyright terms: Public domain | W3C validator |