Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version |
Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
Ref | Expression |
---|---|
funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
2 | funfn 6464 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 dom cdm 5589 Fun wfun 6427 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-fn 6436 |
This theorem is referenced by: fncofn 6548 resfunexg 7091 funiunfv 7121 funelss 7888 funsssuppss 8006 frrlem4 8105 wfrlem4OLD 8143 smores2 8185 tfrlem1 8207 resfnfinfin 9099 resfifsupp 9156 ordtypelem4 9280 ordtypelem9 9285 ordtypelem10 9286 brdom3 10284 brdom5 10285 brdom4 10286 fpwwe2lem10 10396 hashimarn 14155 resunimafz0 14157 isstruct2 16850 invf 17480 lindfrn 21028 ofco2 21600 dfac14 22769 perfdvf 25067 c1lip2 25162 taylf 25520 lpvtx 27438 upgrle2 27475 uhgrvtxedgiedgb 27506 uhgr2edg 27575 ushgredgedg 27596 ushgredgedgloop 27598 subgruhgredgd 27651 subuhgr 27653 subupgr 27654 subumgr 27655 subusgr 27656 upgrres 27673 umgrres 27674 vtxdun 27848 upgrewlkle2 27973 eupthvdres 28599 cycpmfvlem 31379 cycpmfv3 31382 sitgf 32314 cardpred 33062 nummin 33063 elno2 33857 noinfbnd2lem1 33933 noetainflem4 33943 bj-gabima 35128 gneispace 41744 gneispacef2 41746 funimaeq 42792 limsupresxr 43307 liminfresxr 43308 funcoressn 44536 |
Copyright terms: Public domain | W3C validator |