| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version | ||
| Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
| Ref | Expression |
|---|---|
| funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
| 2 | funfn 6511 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 dom cdm 5616 Fun wfun 6475 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-fn 6484 |
| This theorem is referenced by: fncofn 6598 resfunexg 7149 ralima 7171 funiunfv 7182 funelss 7979 funsssuppss 8120 frrlem4 8219 smores2 8274 tfrlem1 8295 resfnfinfin 9221 resfifsupp 9281 ordtypelem4 9407 ordtypelem9 9412 ordtypelem10 9413 brdom3 10416 brdom5 10417 brdom4 10418 fpwwe2lem10 10528 hashimarn 14344 resunimafz0 14349 isstruct2 17057 invf 17672 lindfrn 21756 psdmul 22079 ofco2 22364 dfac14 23531 perfdvf 25829 c1lip2 25928 taylf 26293 elno2 27591 noinfbnd2lem1 27667 noetainflem4 27677 lpvtx 29044 upgrle2 29081 uhgrvtxedgiedgb 29112 uhgr2edg 29184 ushgredgedg 29205 ushgredgedgloop 29207 subgruhgredgd 29260 subuhgr 29262 subupgr 29263 subumgr 29264 subusgr 29265 upgrres 29282 umgrres 29283 vtxdun 29458 upgrewlkle2 29583 eupthvdres 30210 cycpmfvlem 33076 cycpmfv3 33079 sitgf 34355 cardpred 35098 nummin 35099 bj-gabima 36973 gneispace 44166 gneispacef2 44168 funimaeq 45282 limsupresxr 45803 liminfresxr 45804 funcoressn 47072 isubgr0uhgr 47903 upgrimwlklem1 47927 |
| Copyright terms: Public domain | W3C validator |