| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version | ||
| Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
| Ref | Expression |
|---|---|
| funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
| 2 | funfn 6566 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 dom cdm 5654 Fun wfun 6525 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-fn 6534 |
| This theorem is referenced by: fncofn 6655 resfunexg 7207 ralima 7229 funiunfv 7240 funelss 8046 funsssuppss 8189 frrlem4 8288 wfrlem4OLD 8326 smores2 8368 tfrlem1 8390 resfnfinfin 9349 resfifsupp 9409 ordtypelem4 9535 ordtypelem9 9540 ordtypelem10 9541 brdom3 10542 brdom5 10543 brdom4 10544 fpwwe2lem10 10654 hashimarn 14458 resunimafz0 14463 isstruct2 17168 invf 17781 lindfrn 21781 psdmul 22104 ofco2 22389 dfac14 23556 perfdvf 25856 c1lip2 25955 taylf 26320 elno2 27618 noinfbnd2lem1 27694 noetainflem4 27704 lpvtx 29047 upgrle2 29084 uhgrvtxedgiedgb 29115 uhgr2edg 29187 ushgredgedg 29208 ushgredgedgloop 29210 subgruhgredgd 29263 subuhgr 29265 subupgr 29266 subumgr 29267 subusgr 29268 upgrres 29285 umgrres 29286 vtxdun 29461 upgrewlkle2 29586 eupthvdres 30216 cycpmfvlem 33123 cycpmfv3 33126 sitgf 34379 cardpred 35121 nummin 35122 bj-gabima 36958 gneispace 44158 gneispacef2 44160 funimaeq 45270 limsupresxr 45795 liminfresxr 45796 funcoressn 47071 isubgr0uhgr 47886 upgrimwlklem1 47910 |
| Copyright terms: Public domain | W3C validator |