![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version |
Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
Ref | Expression |
---|---|
funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
2 | funfn 6598 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 dom cdm 5689 Fun wfun 6557 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-fn 6566 |
This theorem is referenced by: fncofn 6686 resfunexg 7235 ralima 7257 funiunfv 7268 funelss 8071 funsssuppss 8214 frrlem4 8313 wfrlem4OLD 8351 smores2 8393 tfrlem1 8415 resfnfinfin 9375 resfifsupp 9435 ordtypelem4 9559 ordtypelem9 9564 ordtypelem10 9565 brdom3 10566 brdom5 10567 brdom4 10568 fpwwe2lem10 10678 hashimarn 14476 resunimafz0 14481 isstruct2 17183 invf 17816 lindfrn 21859 psdmul 22188 ofco2 22473 dfac14 23642 perfdvf 25953 c1lip2 26052 taylf 26417 elno2 27714 noinfbnd2lem1 27790 noetainflem4 27800 lpvtx 29100 upgrle2 29137 uhgrvtxedgiedgb 29168 uhgr2edg 29240 ushgredgedg 29261 ushgredgedgloop 29263 subgruhgredgd 29316 subuhgr 29318 subupgr 29319 subumgr 29320 subusgr 29321 upgrres 29338 umgrres 29339 vtxdun 29514 upgrewlkle2 29639 eupthvdres 30264 cycpmfvlem 33115 cycpmfv3 33118 sitgf 34329 cardpred 35083 nummin 35084 bj-gabima 36923 gneispace 44124 gneispacef2 44126 funimaeq 45191 limsupresxr 45722 liminfresxr 45723 funcoressn 46992 isubgr0uhgr 47797 |
Copyright terms: Public domain | W3C validator |