| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version | ||
| Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
| Ref | Expression |
|---|---|
| funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
| 2 | funfn 6516 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 dom cdm 5619 Fun wfun 6480 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-fn 6489 |
| This theorem is referenced by: fncofn 6603 resfunexg 7155 ralima 7177 funiunfv 7188 funelss 7985 funsssuppss 8126 frrlem4 8225 smores2 8280 tfrlem1 8301 resfnfinfin 9228 resfifsupp 9288 ordtypelem4 9414 ordtypelem9 9419 ordtypelem10 9420 brdom3 10426 brdom5 10427 brdom4 10428 fpwwe2lem10 10538 hashimarn 14349 resunimafz0 14354 isstruct2 17062 invf 17677 lindfrn 21760 psdmul 22082 ofco2 22367 dfac14 23534 perfdvf 25832 c1lip2 25931 taylf 26296 elno2 27594 noinfbnd2lem1 27670 noetainflem4 27680 lpvtx 29048 upgrle2 29085 uhgrvtxedgiedgb 29116 uhgr2edg 29188 ushgredgedg 29209 ushgredgedgloop 29211 subgruhgredgd 29264 subuhgr 29266 subupgr 29267 subumgr 29268 subusgr 29269 upgrres 29286 umgrres 29287 vtxdun 29462 upgrewlkle2 29587 eupthvdres 30217 cycpmfvlem 33088 cycpmfv3 33091 sitgf 34381 cardpred 35124 nummin 35125 bj-gabima 37005 gneispace 44251 gneispacef2 44253 funimaeq 45367 limsupresxr 45888 liminfresxr 45889 funcoressn 47166 isubgr0uhgr 47997 upgrimwlklem1 48021 |
| Copyright terms: Public domain | W3C validator |