![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version |
Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
Ref | Expression |
---|---|
funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
2 | funfn 6608 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 dom cdm 5700 Fun wfun 6567 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fn 6576 |
This theorem is referenced by: fncofn 6696 resfunexg 7252 ralima 7274 funiunfv 7285 funelss 8088 funsssuppss 8231 frrlem4 8330 wfrlem4OLD 8368 smores2 8410 tfrlem1 8432 resfnfinfin 9405 resfifsupp 9466 ordtypelem4 9590 ordtypelem9 9595 ordtypelem10 9596 brdom3 10597 brdom5 10598 brdom4 10599 fpwwe2lem10 10709 hashimarn 14489 resunimafz0 14494 isstruct2 17196 invf 17829 lindfrn 21864 psdmul 22193 ofco2 22478 dfac14 23647 perfdvf 25958 c1lip2 26057 taylf 26420 elno2 27717 noinfbnd2lem1 27793 noetainflem4 27803 lpvtx 29103 upgrle2 29140 uhgrvtxedgiedgb 29171 uhgr2edg 29243 ushgredgedg 29264 ushgredgedgloop 29266 subgruhgredgd 29319 subuhgr 29321 subupgr 29322 subumgr 29323 subusgr 29324 upgrres 29341 umgrres 29342 vtxdun 29517 upgrewlkle2 29642 eupthvdres 30267 cycpmfvlem 33105 cycpmfv3 33108 sitgf 34312 cardpred 35066 nummin 35067 bj-gabima 36906 gneispace 44096 gneispacef2 44098 funimaeq 45155 limsupresxr 45687 liminfresxr 45688 funcoressn 46957 isubgr0uhgr 47743 |
Copyright terms: Public domain | W3C validator |