Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfnd | Structured version Visualization version GIF version |
Description: A function is a function on its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funfnd.1 | ⊢ (𝜑 → Fun 𝐴) |
Ref | Expression |
---|---|
funfnd | ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfnd.1 | . 2 ⊢ (𝜑 → Fun 𝐴) | |
2 | funfn 6365 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
3 | 1, 2 | sylib 221 | 1 ⊢ (𝜑 → 𝐴 Fn dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 dom cdm 5524 Fun wfun 6329 Fn wfn 6330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 df-fn 6338 |
This theorem is referenced by: resfunexg 6969 funiunfv 6999 funelss 7750 funsssuppss 7864 wfrlem4 7968 smores2 8001 tfrlem1 8022 resfnfinfin 8837 resfifsupp 8894 ordtypelem4 9018 ordtypelem9 9023 ordtypelem10 9024 brdom3 9988 brdom5 9989 brdom4 9990 fpwwe2lem10 10100 hashimarn 13851 resunimafz0 13853 isstruct2 16551 invf 17097 lindfrn 20586 ofco2 21151 dfac14 22318 perfdvf 24602 c1lip2 24697 taylf 25055 lpvtx 26960 upgrle2 26997 uhgrvtxedgiedgb 27028 uhgr2edg 27097 ushgredgedg 27118 ushgredgedgloop 27120 subgruhgredgd 27173 subuhgr 27175 subupgr 27176 subumgr 27177 subusgr 27178 upgrres 27195 umgrres 27196 vtxdun 27370 upgrewlkle2 27495 eupthvdres 28119 cycpmfvlem 30905 cycpmfv3 30908 sitgf 31833 cardpred 32591 nummin 32592 frrlem4 33387 elno2 33422 noinfbnd2lem1 33498 noetainflem4 33508 gneispace 41210 gneispacef2 41212 funimaeq 42252 limsupresxr 42774 liminfresxr 42775 funcoressn 44000 |
Copyright terms: Public domain | W3C validator |