| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexd | Structured version Visualization version GIF version | ||
| Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.) |
| Ref | Expression |
|---|---|
| resiexd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resiexd | ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6532 | . 2 ⊢ Fun I | |
| 2 | resiexd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | resfunexg 7171 | . 2 ⊢ ((Fun I ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 I cid 5525 ↾ cres 5633 Fun wfun 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: setcid 18028 estrcid 18075 funcestrcsetclem5 18085 funcsetcestrclem5 18100 funcrngcsetc 20560 funcrngcsetcALT 20561 funcringcsetc 20594 cusgrsize 29435 fzo0pmtrlast 33064 tocycfv 33081 tocycf 33089 lindspropd 33347 rclexi 43597 cnvrcl0 43607 dfrtrcl5 43611 relexp01min 43695 fundcmpsurbijinjpreimafv 47401 fundcmpsurinjALT 47406 ushggricedg 47920 stgrvtx 47946 stgriedg 47947 grlicref 47997 gpgvtx 48027 gpgiedg 48028 uspgrsprfo 48129 rhmsubcALTVlem3 48264 funcringcsetcALTV2lem4 48274 funcringcsetcALTV2lem5 48275 funcringcsetclem4ALTV 48297 funcringcsetclem5ALTV 48298 itcoval0 48644 itcoval1 48645 |
| Copyright terms: Public domain | W3C validator |