| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexd | Structured version Visualization version GIF version | ||
| Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.) |
| Ref | Expression |
|---|---|
| resiexd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resiexd | ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6568 | . 2 ⊢ Fun I | |
| 2 | resiexd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | resfunexg 7207 | . 2 ⊢ ((Fun I ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 I cid 5547 ↾ cres 5656 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: setcid 18099 estrcid 18146 funcestrcsetclem5 18156 funcsetcestrclem5 18171 funcrngcsetc 20600 funcrngcsetcALT 20601 funcringcsetc 20634 cusgrsize 29434 fzo0pmtrlast 33103 tocycfv 33120 tocycf 33128 lindspropd 33398 rclexi 43639 cnvrcl0 43649 dfrtrcl5 43653 relexp01min 43737 fundcmpsurbijinjpreimafv 47421 fundcmpsurinjALT 47426 ushggricedg 47940 stgrvtx 47966 stgriedg 47967 grlicref 48017 gpgvtx 48047 gpgiedg 48048 uspgrsprfo 48123 rhmsubcALTVlem3 48258 funcringcsetcALTV2lem4 48268 funcringcsetcALTV2lem5 48269 funcringcsetclem4ALTV 48291 funcringcsetclem5ALTV 48292 itcoval0 48642 itcoval1 48643 |
| Copyright terms: Public domain | W3C validator |