MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiexd Structured version   Visualization version   GIF version

Theorem resiexd 7217
Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.)
Hypothesis
Ref Expression
resiexd.b (𝜑𝐵𝑉)
Assertion
Ref Expression
resiexd (𝜑 → ( I ↾ 𝐵) ∈ V)

Proof of Theorem resiexd
StepHypRef Expression
1 funi 6580 . 2 Fun I
2 resiexd.b . 2 (𝜑𝐵𝑉)
3 resfunexg 7216 . 2 ((Fun I ∧ 𝐵𝑉) → ( I ↾ 𝐵) ∈ V)
41, 2, 3sylancr 587 1 (𝜑 → ( I ↾ 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474   I cid 5573  cres 5678  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by:  setcid  18035  estrcid  18084  funcestrcsetclem5  18095  funcsetcestrclem5  18110  cusgrsize  28708  tocycfv  32263  tocycf  32271  lindspropd  32494  rclexi  42356  cnvrcl0  42366  dfrtrcl5  42370  relexp01min  42454  fundcmpsurbijinjpreimafv  46065  fundcmpsurinjALT  46070  isomgreqve  46483  ushrisomgr  46499  uspgrsprfo  46516  funcrngcsetc  46886  funcrngcsetcALT  46887  funcringcsetc  46923  funcringcsetcALTV2lem4  46927  funcringcsetcALTV2lem5  46928  funcringcsetclem4ALTV  46950  funcringcsetclem5ALTV  46951  rhmsubcALTVlem3  46994  itcoval0  47338  itcoval1  47339
  Copyright terms: Public domain W3C validator