Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resiexd | Structured version Visualization version GIF version |
Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.) |
Ref | Expression |
---|---|
resiexd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
resiexd | ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6466 | . 2 ⊢ Fun I | |
2 | resiexd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | resfunexg 7091 | . 2 ⊢ ((Fun I ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 I cid 5488 ↾ cres 5591 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 |
This theorem is referenced by: setcid 17801 estrcid 17850 funcestrcsetclem5 17861 funcsetcestrclem5 17876 cusgrsize 27821 tocycfv 31376 tocycf 31384 lindspropd 31577 rclexi 41223 cnvrcl0 41233 dfrtrcl5 41237 relexp01min 41321 fundcmpsurbijinjpreimafv 44859 fundcmpsurinjALT 44864 isomgreqve 45277 ushrisomgr 45293 uspgrsprfo 45310 funcrngcsetc 45556 funcrngcsetcALT 45557 funcringcsetc 45593 funcringcsetcALTV2lem4 45597 funcringcsetcALTV2lem5 45598 funcringcsetclem4ALTV 45620 funcringcsetclem5ALTV 45621 rhmsubcALTVlem3 45664 itcoval0 46008 itcoval1 46009 |
Copyright terms: Public domain | W3C validator |