Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resiexd | Structured version Visualization version GIF version |
Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.) |
Ref | Expression |
---|---|
resiexd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
resiexd | ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6450 | . 2 ⊢ Fun I | |
2 | resiexd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | resfunexg 7073 | . 2 ⊢ ((Fun I ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 586 | 1 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 I cid 5479 ↾ cres 5582 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: setcid 17717 estrcid 17766 funcestrcsetclem5 17777 funcsetcestrclem5 17792 cusgrsize 27724 tocycfv 31278 tocycf 31286 lindspropd 31479 rclexi 41112 cnvrcl0 41122 dfrtrcl5 41126 relexp01min 41210 fundcmpsurbijinjpreimafv 44747 fundcmpsurinjALT 44752 isomgreqve 45165 ushrisomgr 45181 uspgrsprfo 45198 funcrngcsetc 45444 funcrngcsetcALT 45445 funcringcsetc 45481 funcringcsetcALTV2lem4 45485 funcringcsetcALTV2lem5 45486 funcringcsetclem4ALTV 45508 funcringcsetclem5ALTV 45509 rhmsubcALTVlem3 45552 itcoval0 45896 itcoval1 45897 |
Copyright terms: Public domain | W3C validator |