| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexd | Structured version Visualization version GIF version | ||
| Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.) |
| Ref | Expression |
|---|---|
| resiexd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resiexd | ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6519 | . 2 ⊢ Fun I | |
| 2 | resiexd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | resfunexg 7155 | . 2 ⊢ ((Fun I ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 I cid 5513 ↾ cres 5621 Fun wfun 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 |
| This theorem is referenced by: setcid 17999 estrcid 18046 funcestrcsetclem5 18056 funcsetcestrclem5 18071 funcrngcsetc 20561 funcrngcsetcALT 20562 funcringcsetc 20595 cusgrsize 29440 fzo0pmtrlast 33068 tocycfv 33085 tocycf 33093 lindspropd 33355 rclexi 43713 cnvrcl0 43723 dfrtrcl5 43727 relexp01min 43811 fundcmpsurbijinjpreimafv 47512 fundcmpsurinjALT 47517 ushggricedg 48032 stgrvtx 48059 stgriedg 48060 grlicref 48117 gpgvtx 48148 gpgiedg 48149 uspgrsprfo 48253 rhmsubcALTVlem3 48388 funcringcsetcALTV2lem4 48398 funcringcsetcALTV2lem5 48399 funcringcsetclem4ALTV 48421 funcringcsetclem5ALTV 48422 itcoval0 48768 itcoval1 48769 |
| Copyright terms: Public domain | W3C validator |