![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resiexd | Structured version Visualization version GIF version |
Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.) |
Ref | Expression |
---|---|
resiexd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
resiexd | ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6588 | . 2 ⊢ Fun I | |
2 | resiexd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | resfunexg 7231 | . 2 ⊢ ((Fun I ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 585 | 1 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Vcvv 3471 I cid 5577 ↾ cres 5682 Fun wfun 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 |
This theorem is referenced by: setcid 18080 estrcid 18129 funcestrcsetclem5 18140 funcsetcestrclem5 18155 funcrngcsetc 20578 funcrngcsetcALT 20579 funcringcsetc 20612 cusgrsize 29286 tocycfv 32848 tocycf 32856 lindspropd 33116 rclexi 43048 cnvrcl0 43058 dfrtrcl5 43062 relexp01min 43146 fundcmpsurbijinjpreimafv 46749 fundcmpsurinjALT 46754 ushggricedg 47244 uspgrsprfo 47261 rhmsubcALTVlem3 47396 funcringcsetcALTV2lem4 47406 funcringcsetcALTV2lem5 47407 funcringcsetclem4ALTV 47429 funcringcsetclem5ALTV 47430 itcoval0 47786 itcoval1 47787 |
Copyright terms: Public domain | W3C validator |