| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexd | Structured version Visualization version GIF version | ||
| Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.) |
| Ref | Expression |
|---|---|
| resiexd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resiexd | ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6551 | . 2 ⊢ Fun I | |
| 2 | resiexd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | resfunexg 7192 | . 2 ⊢ ((Fun I ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 I cid 5535 ↾ cres 5643 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: setcid 18055 estrcid 18102 funcestrcsetclem5 18112 funcsetcestrclem5 18127 funcrngcsetc 20556 funcrngcsetcALT 20557 funcringcsetc 20590 cusgrsize 29389 fzo0pmtrlast 33056 tocycfv 33073 tocycf 33081 lindspropd 33361 rclexi 43611 cnvrcl0 43621 dfrtrcl5 43625 relexp01min 43709 fundcmpsurbijinjpreimafv 47412 fundcmpsurinjALT 47417 ushggricedg 47931 stgrvtx 47957 stgriedg 47958 grlicref 48008 gpgvtx 48038 gpgiedg 48039 uspgrsprfo 48140 rhmsubcALTVlem3 48275 funcringcsetcALTV2lem4 48285 funcringcsetcALTV2lem5 48286 funcringcsetclem4ALTV 48308 funcringcsetclem5ALTV 48309 itcoval0 48655 itcoval1 48656 |
| Copyright terms: Public domain | W3C validator |