| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiexd | Structured version Visualization version GIF version | ||
| Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.) |
| Ref | Expression |
|---|---|
| resiexd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resiexd | ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funi 6532 | . 2 ⊢ Fun I | |
| 2 | resiexd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | resfunexg 7171 | . 2 ⊢ ((Fun I ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 I cid 5525 ↾ cres 5633 Fun wfun 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: setcid 18029 estrcid 18076 funcestrcsetclem5 18086 funcsetcestrclem5 18101 funcrngcsetc 20561 funcrngcsetcALT 20562 funcringcsetc 20595 cusgrsize 29436 fzo0pmtrlast 33065 tocycfv 33082 tocycf 33090 lindspropd 33348 rclexi 43598 cnvrcl0 43608 dfrtrcl5 43612 relexp01min 43696 fundcmpsurbijinjpreimafv 47402 fundcmpsurinjALT 47407 ushggricedg 47921 stgrvtx 47947 stgriedg 47948 grlicref 47998 gpgvtx 48028 gpgiedg 48029 uspgrsprfo 48130 rhmsubcALTVlem3 48265 funcringcsetcALTV2lem4 48275 funcringcsetcALTV2lem5 48276 funcringcsetclem4ALTV 48298 funcringcsetclem5ALTV 48299 itcoval0 48645 itcoval1 48646 |
| Copyright terms: Public domain | W3C validator |