MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiexd Structured version   Visualization version   GIF version

Theorem resiexd 7253
Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.)
Hypothesis
Ref Expression
resiexd.b (𝜑𝐵𝑉)
Assertion
Ref Expression
resiexd (𝜑 → ( I ↾ 𝐵) ∈ V)

Proof of Theorem resiexd
StepHypRef Expression
1 funi 6610 . 2 Fun I
2 resiexd.b . 2 (𝜑𝐵𝑉)
3 resfunexg 7252 . 2 ((Fun I ∧ 𝐵𝑉) → ( I ↾ 𝐵) ∈ V)
41, 2, 3sylancr 586 1 (𝜑 → ( I ↾ 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488   I cid 5592  cres 5702  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  setcid  18153  estrcid  18202  funcestrcsetclem5  18213  funcsetcestrclem5  18228  funcrngcsetc  20662  funcrngcsetcALT  20663  funcringcsetc  20696  cusgrsize  29490  fzo0pmtrlast  33085  tocycfv  33102  tocycf  33110  lindspropd  33376  rclexi  43577  cnvrcl0  43587  dfrtrcl5  43591  relexp01min  43675  fundcmpsurbijinjpreimafv  47281  fundcmpsurinjALT  47286  ushggricedg  47780  grlicref  47829  uspgrsprfo  47871  rhmsubcALTVlem3  48006  funcringcsetcALTV2lem4  48016  funcringcsetcALTV2lem5  48017  funcringcsetclem4ALTV  48039  funcringcsetclem5ALTV  48040  itcoval0  48396  itcoval1  48397
  Copyright terms: Public domain W3C validator