![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resiexd | Structured version Visualization version GIF version |
Description: The restriction of the identity relation to a set is a set. (Contributed by AV, 15-Feb-2020.) |
Ref | Expression |
---|---|
resiexd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
resiexd | ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funi 6134 | . 2 ⊢ Fun I | |
2 | resiexd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | resfunexg 6709 | . 2 ⊢ ((Fun I ∧ 𝐵 ∈ 𝑉) → ( I ↾ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 582 | 1 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 Vcvv 3386 I cid 5220 ↾ cres 5315 Fun wfun 6096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 |
This theorem is referenced by: estrcid 17087 funcestrcsetclem4 17097 funcestrcsetclem5 17098 funcsetcestrclem4 17112 funcsetcestrclem5 17113 cusgrsize 26703 rclexi 38700 cnvrcl0 38710 dfrtrcl5 38714 relexp01min 38783 isomgreqve 42490 ushrisomgr 42506 uspgrsprfo 42550 funcrngcsetc 42792 funcrngcsetcALT 42793 funcringcsetc 42829 funcringcsetcALTV2lem4 42833 funcringcsetcALTV2lem5 42834 funcringcsetclem4ALTV 42856 funcringcsetclem5ALTV 42857 rhmsubcALTVlem3 42900 |
Copyright terms: Public domain | W3C validator |