Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > residfi | Structured version Visualization version GIF version |
Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
residfi | ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresi 5893 | . . 3 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
2 | dmfi 8835 | . . 3 ⊢ (( I ↾ 𝐴) ∈ Fin → dom ( I ↾ 𝐴) ∈ Fin) | |
3 | 1, 2 | eqeltrrid 2857 | . 2 ⊢ (( I ↾ 𝐴) ∈ Fin → 𝐴 ∈ Fin) |
4 | funi 6367 | . . . 4 ⊢ Fun I | |
5 | funfn 6365 | . . . 4 ⊢ (Fun I ↔ I Fn dom I ) | |
6 | 4, 5 | mpbi 233 | . . 3 ⊢ I Fn dom I |
7 | resfnfinfin 8837 | . . 3 ⊢ (( I Fn dom I ∧ 𝐴 ∈ Fin) → ( I ↾ 𝐴) ∈ Fin) | |
8 | 6, 7 | mpan 689 | . 2 ⊢ (𝐴 ∈ Fin → ( I ↾ 𝐴) ∈ Fin) |
9 | 3, 8 | impbii 212 | 1 ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2111 I cid 5429 dom cdm 5524 ↾ cres 5526 Fun wfun 6329 Fn wfn 6330 Fincfn 8527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-1st 7693 df-2nd 7694 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-fin 8531 |
This theorem is referenced by: fusgrfisstep 27218 |
Copyright terms: Public domain | W3C validator |