MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  residfi Structured version   Visualization version   GIF version

Theorem residfi 9265
Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
residfi (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin)

Proof of Theorem residfi
StepHypRef Expression
1 dmresi 6012 . . 3 dom ( I ↾ 𝐴) = 𝐴
2 dmfi 9262 . . 3 (( I ↾ 𝐴) ∈ Fin → dom ( I ↾ 𝐴) ∈ Fin)
31, 2eqeltrrid 2833 . 2 (( I ↾ 𝐴) ∈ Fin → 𝐴 ∈ Fin)
4 funi 6532 . . . 4 Fun I
5 funfn 6530 . . . 4 (Fun I ↔ I Fn dom I )
64, 5mpbi 230 . . 3 I Fn dom I
7 resfnfinfin 9264 . . 3 (( I Fn dom I ∧ 𝐴 ∈ Fin) → ( I ↾ 𝐴) ∈ Fin)
86, 7mpan 690 . 2 (𝐴 ∈ Fin → ( I ↾ 𝐴) ∈ Fin)
93, 8impbii 209 1 (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109   I cid 5525  dom cdm 5631  cres 5633  Fun wfun 6493   Fn wfn 6494  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-en 8896  df-dom 8897  df-fin 8899
This theorem is referenced by:  fusgrfisstep  29232
  Copyright terms: Public domain W3C validator