Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > residfi | Structured version Visualization version GIF version |
Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
residfi | ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresi 5961 | . . 3 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
2 | dmfi 9097 | . . 3 ⊢ (( I ↾ 𝐴) ∈ Fin → dom ( I ↾ 𝐴) ∈ Fin) | |
3 | 1, 2 | eqeltrrid 2844 | . 2 ⊢ (( I ↾ 𝐴) ∈ Fin → 𝐴 ∈ Fin) |
4 | funi 6466 | . . . 4 ⊢ Fun I | |
5 | funfn 6464 | . . . 4 ⊢ (Fun I ↔ I Fn dom I ) | |
6 | 4, 5 | mpbi 229 | . . 3 ⊢ I Fn dom I |
7 | resfnfinfin 9099 | . . 3 ⊢ (( I Fn dom I ∧ 𝐴 ∈ Fin) → ( I ↾ 𝐴) ∈ Fin) | |
8 | 6, 7 | mpan 687 | . 2 ⊢ (𝐴 ∈ Fin → ( I ↾ 𝐴) ∈ Fin) |
9 | 3, 8 | impbii 208 | 1 ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 I cid 5488 dom cdm 5589 ↾ cres 5591 Fun wfun 6427 Fn wfn 6428 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-fin 8737 |
This theorem is referenced by: fusgrfisstep 27696 |
Copyright terms: Public domain | W3C validator |