| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > residfi | Structured version Visualization version GIF version | ||
| Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| residfi | ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmresi 6012 | . . 3 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
| 2 | dmfi 9262 | . . 3 ⊢ (( I ↾ 𝐴) ∈ Fin → dom ( I ↾ 𝐴) ∈ Fin) | |
| 3 | 1, 2 | eqeltrrid 2833 | . 2 ⊢ (( I ↾ 𝐴) ∈ Fin → 𝐴 ∈ Fin) |
| 4 | funi 6532 | . . . 4 ⊢ Fun I | |
| 5 | funfn 6530 | . . . 4 ⊢ (Fun I ↔ I Fn dom I ) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ I Fn dom I |
| 7 | resfnfinfin 9264 | . . 3 ⊢ (( I Fn dom I ∧ 𝐴 ∈ Fin) → ( I ↾ 𝐴) ∈ Fin) | |
| 8 | 6, 7 | mpan 690 | . 2 ⊢ (𝐴 ∈ Fin → ( I ↾ 𝐴) ∈ Fin) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 I cid 5525 dom cdm 5631 ↾ cres 5633 Fun wfun 6493 Fn wfn 6494 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1st 7947 df-2nd 7948 df-1o 8411 df-en 8896 df-dom 8897 df-fin 8899 |
| This theorem is referenced by: fusgrfisstep 29232 |
| Copyright terms: Public domain | W3C validator |