![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > residfi | Structured version Visualization version GIF version |
Description: A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
residfi | ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresi 5674 | . . 3 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
2 | dmfi 8484 | . . 3 ⊢ (( I ↾ 𝐴) ∈ Fin → dom ( I ↾ 𝐴) ∈ Fin) | |
3 | 1, 2 | syl5eqelr 2881 | . 2 ⊢ (( I ↾ 𝐴) ∈ Fin → 𝐴 ∈ Fin) |
4 | funi 6131 | . . . 4 ⊢ Fun I | |
5 | funfn 6129 | . . . 4 ⊢ (Fun I ↔ I Fn dom I ) | |
6 | 4, 5 | mpbi 222 | . . 3 ⊢ I Fn dom I |
7 | resfnfinfin 8486 | . . 3 ⊢ (( I Fn dom I ∧ 𝐴 ∈ Fin) → ( I ↾ 𝐴) ∈ Fin) | |
8 | 6, 7 | mpan 682 | . 2 ⊢ (𝐴 ∈ Fin → ( I ↾ 𝐴) ∈ Fin) |
9 | 3, 8 | impbii 201 | 1 ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2157 I cid 5217 dom cdm 5310 ↾ cres 5312 Fun wfun 6093 Fn wfn 6094 Fincfn 8193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-en 8194 df-dom 8195 df-fin 8197 |
This theorem is referenced by: fusgrfisstep 26555 |
Copyright terms: Public domain | W3C validator |