MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheiborlem Structured version   Visualization version   GIF version

Theorem cnheiborlem 24902
Description: Lemma for cnheibor 24903. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2 𝐽 = (TopOpen‘ℂfld)
cnheibor.3 𝑇 = (𝐽t 𝑋)
cnheibor.4 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
cnheibor.5 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
Assertion
Ref Expression
cnheiborlem ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp)
Distinct variable groups:   𝑧,𝐹   𝑧,𝑅   𝑥,𝑦,𝑧,𝑇   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem cnheiborlem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . 5 𝐽 = (TopOpen‘ℂfld)
21cnfldtop 24720 . . . 4 𝐽 ∈ Top
3 cnheibor.4 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
43cnref1o 12999 . . . . . . . . 9 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
5 f1ofn 6818 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹 Fn (ℝ × ℝ))
6 elpreima 7047 . . . . . . . . 9 (𝐹 Fn (ℝ × ℝ) → (𝑢 ∈ (𝐹𝑋) ↔ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)))
74, 5, 6mp2b 10 . . . . . . . 8 (𝑢 ∈ (𝐹𝑋) ↔ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋))
8 1st2nd2 8025 . . . . . . . . . . 11 (𝑢 ∈ (ℝ × ℝ) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
98ad2antrl 728 . . . . . . . . . 10 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
10 xp1st 8018 . . . . . . . . . . . . 13 (𝑢 ∈ (ℝ × ℝ) → (1st𝑢) ∈ ℝ)
1110ad2antrl 728 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ ℝ)
1211recnd 11261 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ ℂ)
1312abscld 15453 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ∈ ℝ)
141cnfldtopon 24719 . . . . . . . . . . . . . . . . . . . . 21 𝐽 ∈ (TopOn‘ℂ)
1514toponunii 22852 . . . . . . . . . . . . . . . . . . . 20 ℂ = 𝐽
1615cldss 22965 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ (Clsd‘𝐽) → 𝑋 ⊆ ℂ)
1716adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ ℂ)
1817adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑋 ⊆ ℂ)
19 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹𝑢) ∈ 𝑋)
2018, 19sseldd 3959 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹𝑢) ∈ ℂ)
2120abscld 15453 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(𝐹𝑢)) ∈ ℝ)
22 simplrl 776 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑅 ∈ ℝ)
23 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 ∈ (ℝ × ℝ))
24 f1ocnvfv1 7268 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ 𝑢 ∈ (ℝ × ℝ)) → (𝐹‘(𝐹𝑢)) = 𝑢)
254, 23, 24sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹‘(𝐹𝑢)) = 𝑢)
26 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝐹𝑢) → (ℜ‘𝑧) = (ℜ‘(𝐹𝑢)))
27 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝐹𝑢) → (ℑ‘𝑧) = (ℑ‘(𝐹𝑢)))
2826, 27opeq12d 4857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝐹𝑢) → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
293cnrecnv 15182 . . . . . . . . . . . . . . . . . . . . . 22 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
30 opex 5439 . . . . . . . . . . . . . . . . . . . . . 22 ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩ ∈ V
3128, 29, 30fvmpt 6985 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑢) ∈ ℂ → (𝐹‘(𝐹𝑢)) = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3220, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹‘(𝐹𝑢)) = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3325, 32eqtr3d 2772 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3433fveq2d 6879 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) = (1st ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩))
35 fvex 6888 . . . . . . . . . . . . . . . . . . 19 (ℜ‘(𝐹𝑢)) ∈ V
36 fvex 6888 . . . . . . . . . . . . . . . . . . 19 (ℑ‘(𝐹𝑢)) ∈ V
3735, 36op1st 7994 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩) = (ℜ‘(𝐹𝑢))
3834, 37eqtrdi 2786 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) = (ℜ‘(𝐹𝑢)))
3938fveq2d 6879 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) = (abs‘(ℜ‘(𝐹𝑢))))
40 absrele 15325 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ∈ ℂ → (abs‘(ℜ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
4120, 40syl 17 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(ℜ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
4239, 41eqbrtrd 5141 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ≤ (abs‘(𝐹𝑢)))
43 fveq2 6875 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹𝑢) → (abs‘𝑧) = (abs‘(𝐹𝑢)))
4443breq1d 5129 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑢) → ((abs‘𝑧) ≤ 𝑅 ↔ (abs‘(𝐹𝑢)) ≤ 𝑅))
45 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)
4644, 45, 19rspcdva 3602 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(𝐹𝑢)) ≤ 𝑅)
4713, 21, 22, 42, 46letrd 11390 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ≤ 𝑅)
4811, 22absled 15447 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((abs‘(1st𝑢)) ≤ 𝑅 ↔ (-𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
4947, 48mpbid 232 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (-𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅))
5049simpld 494 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ≤ (1st𝑢))
5149simprd 495 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ≤ 𝑅)
52 renegcl 11544 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
5322, 52syl 17 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ∈ ℝ)
54 elicc2 13426 . . . . . . . . . . . . 13 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((1st𝑢) ∈ (-𝑅[,]𝑅) ↔ ((1st𝑢) ∈ ℝ ∧ -𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5553, 22, 54syl2anc 584 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((1st𝑢) ∈ (-𝑅[,]𝑅) ↔ ((1st𝑢) ∈ ℝ ∧ -𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5611, 50, 51, 55mpbir3and 1343 . . . . . . . . . . 11 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ (-𝑅[,]𝑅))
57 xp2nd 8019 . . . . . . . . . . . . 13 (𝑢 ∈ (ℝ × ℝ) → (2nd𝑢) ∈ ℝ)
5857ad2antrl 728 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ ℝ)
5958recnd 11261 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ ℂ)
6059abscld 15453 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ∈ ℝ)
6133fveq2d 6879 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) = (2nd ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩))
6235, 36op2nd 7995 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩) = (ℑ‘(𝐹𝑢))
6361, 62eqtrdi 2786 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) = (ℑ‘(𝐹𝑢)))
6463fveq2d 6879 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) = (abs‘(ℑ‘(𝐹𝑢))))
65 absimle 15326 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ∈ ℂ → (abs‘(ℑ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
6620, 65syl 17 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(ℑ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
6764, 66eqbrtrd 5141 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ≤ (abs‘(𝐹𝑢)))
6860, 21, 22, 67, 46letrd 11390 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ≤ 𝑅)
6958, 22absled 15447 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((abs‘(2nd𝑢)) ≤ 𝑅 ↔ (-𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7068, 69mpbid 232 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (-𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅))
7170simpld 494 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ≤ (2nd𝑢))
7270simprd 495 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ≤ 𝑅)
73 elicc2 13426 . . . . . . . . . . . . 13 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((2nd𝑢) ∈ (-𝑅[,]𝑅) ↔ ((2nd𝑢) ∈ ℝ ∧ -𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7453, 22, 73syl2anc 584 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((2nd𝑢) ∈ (-𝑅[,]𝑅) ↔ ((2nd𝑢) ∈ ℝ ∧ -𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7558, 71, 72, 74mpbir3and 1343 . . . . . . . . . . 11 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ (-𝑅[,]𝑅))
7656, 75opelxpd 5693 . . . . . . . . . 10 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ⟨(1st𝑢), (2nd𝑢)⟩ ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
779, 76eqeltrd 2834 . . . . . . . . 9 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
7877ex 412 . . . . . . . 8 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
797, 78biimtrid 242 . . . . . . 7 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝑢 ∈ (𝐹𝑋) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
8079ssrdv 3964 . . . . . 6 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
81 f1ofun 6819 . . . . . . . 8 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → Fun 𝐹)
824, 81ax-mp 5 . . . . . . 7 Fun 𝐹
83 f1ofo 6824 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:(ℝ × ℝ)–onto→ℂ)
84 forn 6792 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–onto→ℂ → ran 𝐹 = ℂ)
854, 83, 84mp2b 10 . . . . . . . 8 ran 𝐹 = ℂ
8617, 85sseqtrrdi 4000 . . . . . . 7 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ ran 𝐹)
87 funimass1 6617 . . . . . . 7 ((Fun 𝐹𝑋 ⊆ ran 𝐹) → ((𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))))
8882, 86, 87sylancr 587 . . . . . 6 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))))
8980, 88mpd 15 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
90 cnheibor.5 . . . . 5 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
9189, 90sseqtrrdi 4000 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋𝑌)
92 eqid 2735 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
933, 92, 1cnrehmeo 24900 . . . . . . 7 𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽)
94 imaexg 7907 . . . . . . 7 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) → (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ V)
9593, 94ax-mp 5 . . . . . 6 (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ V
9690, 95eqeltri 2830 . . . . 5 𝑌 ∈ V
9796a1i 11 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑌 ∈ V)
98 restabs 23101 . . . 4 ((𝐽 ∈ Top ∧ 𝑋𝑌𝑌 ∈ V) → ((𝐽t 𝑌) ↾t 𝑋) = (𝐽t 𝑋))
992, 91, 97, 98mp3an2i 1468 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) = (𝐽t 𝑋))
100 cnheibor.3 . . 3 𝑇 = (𝐽t 𝑋)
10199, 100eqtr4di 2788 . 2 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) = 𝑇)
10290oveq2i 7414 . . . . 5 (𝐽t 𝑌) = (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
103 ishmeo 23695 . . . . . . . 8 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) ↔ (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn ((topGen‘ran (,)) ×t (topGen‘ran (,))))))
10493, 103mpbi 230 . . . . . . 7 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn ((topGen‘ran (,)) ×t (topGen‘ran (,)))))
105104simpli 483 . . . . . 6 𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽)
106 iccssre 13444 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
10752, 106mpancom 688 . . . . . . . . . 10 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
1081, 92rerest 24741 . . . . . . . . . 10 ((-𝑅[,]𝑅) ⊆ ℝ → (𝐽t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
109107, 108syl 17 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝐽t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
110109, 109oveq12d 7421 . . . . . . . 8 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))))
111 retop 24698 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
112 ovex 7436 . . . . . . . . 9 (-𝑅[,]𝑅) ∈ V
113 txrest 23567 . . . . . . . . 9 ((((topGen‘ran (,)) ∈ Top ∧ (topGen‘ran (,)) ∈ Top) ∧ ((-𝑅[,]𝑅) ∈ V ∧ (-𝑅[,]𝑅) ∈ V)) → (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))))
114111, 111, 112, 112, 113mp4an 693 . . . . . . . 8 (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
115110, 114eqtr4di 2788 . . . . . . 7 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
116 eqid 2735 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))
11792, 116icccmp 24763 . . . . . . . . . 10 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ∈ Comp)
11852, 117mpancom 688 . . . . . . . . 9 (𝑅 ∈ ℝ → ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ∈ Comp)
119109, 118eqeltrd 2834 . . . . . . . 8 (𝑅 ∈ ℝ → (𝐽t (-𝑅[,]𝑅)) ∈ Comp)
120 txcmp 23579 . . . . . . . 8 (((𝐽t (-𝑅[,]𝑅)) ∈ Comp ∧ (𝐽t (-𝑅[,]𝑅)) ∈ Comp) → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) ∈ Comp)
121119, 119, 120syl2anc 584 . . . . . . 7 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) ∈ Comp)
122115, 121eqeltrrd 2835 . . . . . 6 (𝑅 ∈ ℝ → (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ Comp)
123 imacmp 23333 . . . . . 6 ((𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ Comp) → (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))) ∈ Comp)
124105, 122, 123sylancr 587 . . . . 5 (𝑅 ∈ ℝ → (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))) ∈ Comp)
125102, 124eqeltrid 2838 . . . 4 (𝑅 ∈ ℝ → (𝐽t 𝑌) ∈ Comp)
126125ad2antrl 728 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝐽t 𝑌) ∈ Comp)
127 imassrn 6058 . . . . . 6 (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ⊆ ran 𝐹
12890, 127eqsstri 4005 . . . . 5 𝑌 ⊆ ran 𝐹
129 f1of 6817 . . . . . 6 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:(ℝ × ℝ)⟶ℂ)
130 frn 6712 . . . . . 6 (𝐹:(ℝ × ℝ)⟶ℂ → ran 𝐹 ⊆ ℂ)
1314, 129, 130mp2b 10 . . . . 5 ran 𝐹 ⊆ ℂ
132128, 131sstri 3968 . . . 4 𝑌 ⊆ ℂ
133 simpl 482 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ∈ (Clsd‘𝐽))
13415restcldi 23109 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ∈ (Clsd‘𝐽) ∧ 𝑋𝑌) → 𝑋 ∈ (Clsd‘(𝐽t 𝑌)))
135132, 133, 91, 134mp3an2i 1468 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ∈ (Clsd‘(𝐽t 𝑌)))
136 cmpcld 23338 . . 3 (((𝐽t 𝑌) ∈ Comp ∧ 𝑋 ∈ (Clsd‘(𝐽t 𝑌))) → ((𝐽t 𝑌) ↾t 𝑋) ∈ Comp)
137126, 135, 136syl2anc 584 . 2 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) ∈ Comp)
138101, 137eqeltrrd 2835 1 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  cop 4607   class class class wbr 5119   × cxp 5652  ccnv 5653  ran crn 5655  cima 5657  Fun wfun 6524   Fn wfn 6525  wf 6526  ontowfo 6528  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  cmpo 7405  1st c1st 7984  2nd c2nd 7985  cc 11125  cr 11126  ici 11129   + caddc 11130   · cmul 11132  cle 11268  -cneg 11465  (,)cioo 13360  [,]cicc 13363  cre 15114  cim 15115  abscabs 15251  t crest 17432  TopOpenctopn 17433  topGenctg 17449  fldccnfld 21313  Topctop 22829  Clsdccld 22952   Cn ccn 23160  Compccmp 23322   ×t ctx 23496  Homeochmeo 23689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-icc 13367  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-cn 23163  df-cnp 23164  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820
This theorem is referenced by:  cnheibor  24903
  Copyright terms: Public domain W3C validator