MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheiborlem Structured version   Visualization version   GIF version

Theorem cnheiborlem 24853
Description: Lemma for cnheibor 24854. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2 𝐽 = (TopOpen‘ℂfld)
cnheibor.3 𝑇 = (𝐽t 𝑋)
cnheibor.4 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
cnheibor.5 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
Assertion
Ref Expression
cnheiborlem ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp)
Distinct variable groups:   𝑧,𝐹   𝑧,𝑅   𝑥,𝑦,𝑧,𝑇   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem cnheiborlem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . 5 𝐽 = (TopOpen‘ℂfld)
21cnfldtop 24671 . . . 4 𝐽 ∈ Top
3 cnheibor.4 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
43cnref1o 12944 . . . . . . . . 9 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
5 f1ofn 6801 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹 Fn (ℝ × ℝ))
6 elpreima 7030 . . . . . . . . 9 (𝐹 Fn (ℝ × ℝ) → (𝑢 ∈ (𝐹𝑋) ↔ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)))
74, 5, 6mp2b 10 . . . . . . . 8 (𝑢 ∈ (𝐹𝑋) ↔ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋))
8 1st2nd2 8007 . . . . . . . . . . 11 (𝑢 ∈ (ℝ × ℝ) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
98ad2antrl 728 . . . . . . . . . 10 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
10 xp1st 8000 . . . . . . . . . . . . 13 (𝑢 ∈ (ℝ × ℝ) → (1st𝑢) ∈ ℝ)
1110ad2antrl 728 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ ℝ)
1211recnd 11202 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ ℂ)
1312abscld 15405 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ∈ ℝ)
141cnfldtopon 24670 . . . . . . . . . . . . . . . . . . . . 21 𝐽 ∈ (TopOn‘ℂ)
1514toponunii 22803 . . . . . . . . . . . . . . . . . . . 20 ℂ = 𝐽
1615cldss 22916 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ (Clsd‘𝐽) → 𝑋 ⊆ ℂ)
1716adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ ℂ)
1817adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑋 ⊆ ℂ)
19 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹𝑢) ∈ 𝑋)
2018, 19sseldd 3947 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹𝑢) ∈ ℂ)
2120abscld 15405 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(𝐹𝑢)) ∈ ℝ)
22 simplrl 776 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑅 ∈ ℝ)
23 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 ∈ (ℝ × ℝ))
24 f1ocnvfv1 7251 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ 𝑢 ∈ (ℝ × ℝ)) → (𝐹‘(𝐹𝑢)) = 𝑢)
254, 23, 24sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹‘(𝐹𝑢)) = 𝑢)
26 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝐹𝑢) → (ℜ‘𝑧) = (ℜ‘(𝐹𝑢)))
27 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝐹𝑢) → (ℑ‘𝑧) = (ℑ‘(𝐹𝑢)))
2826, 27opeq12d 4845 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝐹𝑢) → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
293cnrecnv 15131 . . . . . . . . . . . . . . . . . . . . . 22 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
30 opex 5424 . . . . . . . . . . . . . . . . . . . . . 22 ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩ ∈ V
3128, 29, 30fvmpt 6968 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑢) ∈ ℂ → (𝐹‘(𝐹𝑢)) = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3220, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹‘(𝐹𝑢)) = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3325, 32eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3433fveq2d 6862 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) = (1st ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩))
35 fvex 6871 . . . . . . . . . . . . . . . . . . 19 (ℜ‘(𝐹𝑢)) ∈ V
36 fvex 6871 . . . . . . . . . . . . . . . . . . 19 (ℑ‘(𝐹𝑢)) ∈ V
3735, 36op1st 7976 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩) = (ℜ‘(𝐹𝑢))
3834, 37eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) = (ℜ‘(𝐹𝑢)))
3938fveq2d 6862 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) = (abs‘(ℜ‘(𝐹𝑢))))
40 absrele 15274 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ∈ ℂ → (abs‘(ℜ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
4120, 40syl 17 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(ℜ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
4239, 41eqbrtrd 5129 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ≤ (abs‘(𝐹𝑢)))
43 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹𝑢) → (abs‘𝑧) = (abs‘(𝐹𝑢)))
4443breq1d 5117 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑢) → ((abs‘𝑧) ≤ 𝑅 ↔ (abs‘(𝐹𝑢)) ≤ 𝑅))
45 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)
4644, 45, 19rspcdva 3589 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(𝐹𝑢)) ≤ 𝑅)
4713, 21, 22, 42, 46letrd 11331 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ≤ 𝑅)
4811, 22absled 15399 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((abs‘(1st𝑢)) ≤ 𝑅 ↔ (-𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
4947, 48mpbid 232 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (-𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅))
5049simpld 494 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ≤ (1st𝑢))
5149simprd 495 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ≤ 𝑅)
52 renegcl 11485 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
5322, 52syl 17 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ∈ ℝ)
54 elicc2 13372 . . . . . . . . . . . . 13 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((1st𝑢) ∈ (-𝑅[,]𝑅) ↔ ((1st𝑢) ∈ ℝ ∧ -𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5553, 22, 54syl2anc 584 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((1st𝑢) ∈ (-𝑅[,]𝑅) ↔ ((1st𝑢) ∈ ℝ ∧ -𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5611, 50, 51, 55mpbir3and 1343 . . . . . . . . . . 11 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ (-𝑅[,]𝑅))
57 xp2nd 8001 . . . . . . . . . . . . 13 (𝑢 ∈ (ℝ × ℝ) → (2nd𝑢) ∈ ℝ)
5857ad2antrl 728 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ ℝ)
5958recnd 11202 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ ℂ)
6059abscld 15405 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ∈ ℝ)
6133fveq2d 6862 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) = (2nd ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩))
6235, 36op2nd 7977 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩) = (ℑ‘(𝐹𝑢))
6361, 62eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) = (ℑ‘(𝐹𝑢)))
6463fveq2d 6862 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) = (abs‘(ℑ‘(𝐹𝑢))))
65 absimle 15275 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ∈ ℂ → (abs‘(ℑ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
6620, 65syl 17 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(ℑ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
6764, 66eqbrtrd 5129 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ≤ (abs‘(𝐹𝑢)))
6860, 21, 22, 67, 46letrd 11331 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ≤ 𝑅)
6958, 22absled 15399 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((abs‘(2nd𝑢)) ≤ 𝑅 ↔ (-𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7068, 69mpbid 232 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (-𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅))
7170simpld 494 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ≤ (2nd𝑢))
7270simprd 495 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ≤ 𝑅)
73 elicc2 13372 . . . . . . . . . . . . 13 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((2nd𝑢) ∈ (-𝑅[,]𝑅) ↔ ((2nd𝑢) ∈ ℝ ∧ -𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7453, 22, 73syl2anc 584 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((2nd𝑢) ∈ (-𝑅[,]𝑅) ↔ ((2nd𝑢) ∈ ℝ ∧ -𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7558, 71, 72, 74mpbir3and 1343 . . . . . . . . . . 11 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ (-𝑅[,]𝑅))
7656, 75opelxpd 5677 . . . . . . . . . 10 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ⟨(1st𝑢), (2nd𝑢)⟩ ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
779, 76eqeltrd 2828 . . . . . . . . 9 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
7877ex 412 . . . . . . . 8 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
797, 78biimtrid 242 . . . . . . 7 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝑢 ∈ (𝐹𝑋) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
8079ssrdv 3952 . . . . . 6 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
81 f1ofun 6802 . . . . . . . 8 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → Fun 𝐹)
824, 81ax-mp 5 . . . . . . 7 Fun 𝐹
83 f1ofo 6807 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:(ℝ × ℝ)–onto→ℂ)
84 forn 6775 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–onto→ℂ → ran 𝐹 = ℂ)
854, 83, 84mp2b 10 . . . . . . . 8 ran 𝐹 = ℂ
8617, 85sseqtrrdi 3988 . . . . . . 7 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ ran 𝐹)
87 funimass1 6598 . . . . . . 7 ((Fun 𝐹𝑋 ⊆ ran 𝐹) → ((𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))))
8882, 86, 87sylancr 587 . . . . . 6 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))))
8980, 88mpd 15 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
90 cnheibor.5 . . . . 5 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
9189, 90sseqtrrdi 3988 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋𝑌)
92 eqid 2729 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
933, 92, 1cnrehmeo 24851 . . . . . . 7 𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽)
94 imaexg 7889 . . . . . . 7 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) → (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ V)
9593, 94ax-mp 5 . . . . . 6 (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ V
9690, 95eqeltri 2824 . . . . 5 𝑌 ∈ V
9796a1i 11 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑌 ∈ V)
98 restabs 23052 . . . 4 ((𝐽 ∈ Top ∧ 𝑋𝑌𝑌 ∈ V) → ((𝐽t 𝑌) ↾t 𝑋) = (𝐽t 𝑋))
992, 91, 97, 98mp3an2i 1468 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) = (𝐽t 𝑋))
100 cnheibor.3 . . 3 𝑇 = (𝐽t 𝑋)
10199, 100eqtr4di 2782 . 2 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) = 𝑇)
10290oveq2i 7398 . . . . 5 (𝐽t 𝑌) = (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
103 ishmeo 23646 . . . . . . . 8 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) ↔ (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn ((topGen‘ran (,)) ×t (topGen‘ran (,))))))
10493, 103mpbi 230 . . . . . . 7 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn ((topGen‘ran (,)) ×t (topGen‘ran (,)))))
105104simpli 483 . . . . . 6 𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽)
106 iccssre 13390 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
10752, 106mpancom 688 . . . . . . . . . 10 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
1081, 92rerest 24692 . . . . . . . . . 10 ((-𝑅[,]𝑅) ⊆ ℝ → (𝐽t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
109107, 108syl 17 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝐽t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
110109, 109oveq12d 7405 . . . . . . . 8 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))))
111 retop 24649 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
112 ovex 7420 . . . . . . . . 9 (-𝑅[,]𝑅) ∈ V
113 txrest 23518 . . . . . . . . 9 ((((topGen‘ran (,)) ∈ Top ∧ (topGen‘ran (,)) ∈ Top) ∧ ((-𝑅[,]𝑅) ∈ V ∧ (-𝑅[,]𝑅) ∈ V)) → (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))))
114111, 111, 112, 112, 113mp4an 693 . . . . . . . 8 (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
115110, 114eqtr4di 2782 . . . . . . 7 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
116 eqid 2729 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))
11792, 116icccmp 24714 . . . . . . . . . 10 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ∈ Comp)
11852, 117mpancom 688 . . . . . . . . 9 (𝑅 ∈ ℝ → ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ∈ Comp)
119109, 118eqeltrd 2828 . . . . . . . 8 (𝑅 ∈ ℝ → (𝐽t (-𝑅[,]𝑅)) ∈ Comp)
120 txcmp 23530 . . . . . . . 8 (((𝐽t (-𝑅[,]𝑅)) ∈ Comp ∧ (𝐽t (-𝑅[,]𝑅)) ∈ Comp) → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) ∈ Comp)
121119, 119, 120syl2anc 584 . . . . . . 7 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) ∈ Comp)
122115, 121eqeltrrd 2829 . . . . . 6 (𝑅 ∈ ℝ → (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ Comp)
123 imacmp 23284 . . . . . 6 ((𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ Comp) → (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))) ∈ Comp)
124105, 122, 123sylancr 587 . . . . 5 (𝑅 ∈ ℝ → (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))) ∈ Comp)
125102, 124eqeltrid 2832 . . . 4 (𝑅 ∈ ℝ → (𝐽t 𝑌) ∈ Comp)
126125ad2antrl 728 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝐽t 𝑌) ∈ Comp)
127 imassrn 6042 . . . . . 6 (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ⊆ ran 𝐹
12890, 127eqsstri 3993 . . . . 5 𝑌 ⊆ ran 𝐹
129 f1of 6800 . . . . . 6 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:(ℝ × ℝ)⟶ℂ)
130 frn 6695 . . . . . 6 (𝐹:(ℝ × ℝ)⟶ℂ → ran 𝐹 ⊆ ℂ)
1314, 129, 130mp2b 10 . . . . 5 ran 𝐹 ⊆ ℂ
132128, 131sstri 3956 . . . 4 𝑌 ⊆ ℂ
133 simpl 482 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ∈ (Clsd‘𝐽))
13415restcldi 23060 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ∈ (Clsd‘𝐽) ∧ 𝑋𝑌) → 𝑋 ∈ (Clsd‘(𝐽t 𝑌)))
135132, 133, 91, 134mp3an2i 1468 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ∈ (Clsd‘(𝐽t 𝑌)))
136 cmpcld 23289 . . 3 (((𝐽t 𝑌) ∈ Comp ∧ 𝑋 ∈ (Clsd‘(𝐽t 𝑌))) → ((𝐽t 𝑌) ↾t 𝑋) ∈ Comp)
137126, 135, 136syl2anc 584 . 2 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) ∈ Comp)
138101, 137eqeltrrd 2829 1 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  cop 4595   class class class wbr 5107   × cxp 5636  ccnv 5637  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  cc 11066  cr 11067  ici 11070   + caddc 11071   · cmul 11073  cle 11209  -cneg 11406  (,)cioo 13306  [,]cicc 13309  cre 15063  cim 15064  abscabs 15200  t crest 17383  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  Topctop 22780  Clsdccld 22903   Cn ccn 23111  Compccmp 23273   ×t ctx 23447  Homeochmeo 23640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771
This theorem is referenced by:  cnheibor  24854
  Copyright terms: Public domain W3C validator