MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheiborlem Structured version   Visualization version   GIF version

Theorem cnheiborlem 24851
Description: Lemma for cnheibor 24852. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2 𝐽 = (TopOpen‘ℂfld)
cnheibor.3 𝑇 = (𝐽t 𝑋)
cnheibor.4 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
cnheibor.5 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
Assertion
Ref Expression
cnheiborlem ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp)
Distinct variable groups:   𝑧,𝐹   𝑧,𝑅   𝑥,𝑦,𝑧,𝑇   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem cnheiborlem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . 5 𝐽 = (TopOpen‘ℂfld)
21cnfldtop 24669 . . . 4 𝐽 ∈ Top
3 cnheibor.4 . . . . . . . . . 10 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
43cnref1o 12886 . . . . . . . . 9 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
5 f1ofn 6765 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹 Fn (ℝ × ℝ))
6 elpreima 6992 . . . . . . . . 9 (𝐹 Fn (ℝ × ℝ) → (𝑢 ∈ (𝐹𝑋) ↔ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)))
74, 5, 6mp2b 10 . . . . . . . 8 (𝑢 ∈ (𝐹𝑋) ↔ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋))
8 1st2nd2 7963 . . . . . . . . . . 11 (𝑢 ∈ (ℝ × ℝ) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
98ad2antrl 728 . . . . . . . . . 10 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 = ⟨(1st𝑢), (2nd𝑢)⟩)
10 xp1st 7956 . . . . . . . . . . . . 13 (𝑢 ∈ (ℝ × ℝ) → (1st𝑢) ∈ ℝ)
1110ad2antrl 728 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ ℝ)
1211recnd 11143 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ ℂ)
1312abscld 15346 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ∈ ℝ)
141cnfldtopon 24668 . . . . . . . . . . . . . . . . . . . . 21 𝐽 ∈ (TopOn‘ℂ)
1514toponunii 22801 . . . . . . . . . . . . . . . . . . . 20 ℂ = 𝐽
1615cldss 22914 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ (Clsd‘𝐽) → 𝑋 ⊆ ℂ)
1716adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ ℂ)
1817adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑋 ⊆ ℂ)
19 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹𝑢) ∈ 𝑋)
2018, 19sseldd 3936 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹𝑢) ∈ ℂ)
2120abscld 15346 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(𝐹𝑢)) ∈ ℝ)
22 simplrl 776 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑅 ∈ ℝ)
23 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 ∈ (ℝ × ℝ))
24 f1ocnvfv1 7213 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(ℝ × ℝ)–1-1-onto→ℂ ∧ 𝑢 ∈ (ℝ × ℝ)) → (𝐹‘(𝐹𝑢)) = 𝑢)
254, 23, 24sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹‘(𝐹𝑢)) = 𝑢)
26 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝐹𝑢) → (ℜ‘𝑧) = (ℜ‘(𝐹𝑢)))
27 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝐹𝑢) → (ℑ‘𝑧) = (ℑ‘(𝐹𝑢)))
2826, 27opeq12d 4832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝐹𝑢) → ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩ = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
293cnrecnv 15072 . . . . . . . . . . . . . . . . . . . . . 22 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
30 opex 5407 . . . . . . . . . . . . . . . . . . . . . 22 ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩ ∈ V
3128, 29, 30fvmpt 6930 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑢) ∈ ℂ → (𝐹‘(𝐹𝑢)) = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3220, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (𝐹‘(𝐹𝑢)) = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3325, 32eqtr3d 2766 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 = ⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩)
3433fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) = (1st ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩))
35 fvex 6835 . . . . . . . . . . . . . . . . . . 19 (ℜ‘(𝐹𝑢)) ∈ V
36 fvex 6835 . . . . . . . . . . . . . . . . . . 19 (ℑ‘(𝐹𝑢)) ∈ V
3735, 36op1st 7932 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩) = (ℜ‘(𝐹𝑢))
3834, 37eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) = (ℜ‘(𝐹𝑢)))
3938fveq2d 6826 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) = (abs‘(ℜ‘(𝐹𝑢))))
40 absrele 15215 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ∈ ℂ → (abs‘(ℜ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
4120, 40syl 17 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(ℜ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
4239, 41eqbrtrd 5114 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ≤ (abs‘(𝐹𝑢)))
43 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐹𝑢) → (abs‘𝑧) = (abs‘(𝐹𝑢)))
4443breq1d 5102 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑢) → ((abs‘𝑧) ≤ 𝑅 ↔ (abs‘(𝐹𝑢)) ≤ 𝑅))
45 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)
4644, 45, 19rspcdva 3578 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(𝐹𝑢)) ≤ 𝑅)
4713, 21, 22, 42, 46letrd 11273 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(1st𝑢)) ≤ 𝑅)
4811, 22absled 15340 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((abs‘(1st𝑢)) ≤ 𝑅 ↔ (-𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
4947, 48mpbid 232 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (-𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅))
5049simpld 494 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ≤ (1st𝑢))
5149simprd 495 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ≤ 𝑅)
52 renegcl 11427 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ → -𝑅 ∈ ℝ)
5322, 52syl 17 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ∈ ℝ)
54 elicc2 13314 . . . . . . . . . . . . 13 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((1st𝑢) ∈ (-𝑅[,]𝑅) ↔ ((1st𝑢) ∈ ℝ ∧ -𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5553, 22, 54syl2anc 584 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((1st𝑢) ∈ (-𝑅[,]𝑅) ↔ ((1st𝑢) ∈ ℝ ∧ -𝑅 ≤ (1st𝑢) ∧ (1st𝑢) ≤ 𝑅)))
5611, 50, 51, 55mpbir3and 1343 . . . . . . . . . . 11 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (1st𝑢) ∈ (-𝑅[,]𝑅))
57 xp2nd 7957 . . . . . . . . . . . . 13 (𝑢 ∈ (ℝ × ℝ) → (2nd𝑢) ∈ ℝ)
5857ad2antrl 728 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ ℝ)
5958recnd 11143 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ ℂ)
6059abscld 15346 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ∈ ℝ)
6133fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) = (2nd ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩))
6235, 36op2nd 7933 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨(ℜ‘(𝐹𝑢)), (ℑ‘(𝐹𝑢))⟩) = (ℑ‘(𝐹𝑢))
6361, 62eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) = (ℑ‘(𝐹𝑢)))
6463fveq2d 6826 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) = (abs‘(ℑ‘(𝐹𝑢))))
65 absimle 15216 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ∈ ℂ → (abs‘(ℑ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
6620, 65syl 17 . . . . . . . . . . . . . . . 16 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(ℑ‘(𝐹𝑢))) ≤ (abs‘(𝐹𝑢)))
6764, 66eqbrtrd 5114 . . . . . . . . . . . . . . 15 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ≤ (abs‘(𝐹𝑢)))
6860, 21, 22, 67, 46letrd 11273 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (abs‘(2nd𝑢)) ≤ 𝑅)
6958, 22absled 15340 . . . . . . . . . . . . . 14 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((abs‘(2nd𝑢)) ≤ 𝑅 ↔ (-𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7068, 69mpbid 232 . . . . . . . . . . . . 13 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (-𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅))
7170simpld 494 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → -𝑅 ≤ (2nd𝑢))
7270simprd 495 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ≤ 𝑅)
73 elicc2 13314 . . . . . . . . . . . . 13 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((2nd𝑢) ∈ (-𝑅[,]𝑅) ↔ ((2nd𝑢) ∈ ℝ ∧ -𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7453, 22, 73syl2anc 584 . . . . . . . . . . . 12 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ((2nd𝑢) ∈ (-𝑅[,]𝑅) ↔ ((2nd𝑢) ∈ ℝ ∧ -𝑅 ≤ (2nd𝑢) ∧ (2nd𝑢) ≤ 𝑅)))
7558, 71, 72, 74mpbir3and 1343 . . . . . . . . . . 11 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → (2nd𝑢) ∈ (-𝑅[,]𝑅))
7656, 75opelxpd 5658 . . . . . . . . . 10 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → ⟨(1st𝑢), (2nd𝑢)⟩ ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
779, 76eqeltrd 2828 . . . . . . . . 9 (((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) ∧ (𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋)) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
7877ex 412 . . . . . . . 8 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝑢 ∈ (ℝ × ℝ) ∧ (𝐹𝑢) ∈ 𝑋) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
797, 78biimtrid 242 . . . . . . 7 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝑢 ∈ (𝐹𝑋) → 𝑢 ∈ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
8079ssrdv 3941 . . . . . 6 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
81 f1ofun 6766 . . . . . . . 8 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → Fun 𝐹)
824, 81ax-mp 5 . . . . . . 7 Fun 𝐹
83 f1ofo 6771 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:(ℝ × ℝ)–onto→ℂ)
84 forn 6739 . . . . . . . . 9 (𝐹:(ℝ × ℝ)–onto→ℂ → ran 𝐹 = ℂ)
854, 83, 84mp2b 10 . . . . . . . 8 ran 𝐹 = ℂ
8617, 85sseqtrrdi 3977 . . . . . . 7 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ ran 𝐹)
87 funimass1 6564 . . . . . . 7 ((Fun 𝐹𝑋 ⊆ ran 𝐹) → ((𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))))
8882, 86, 87sylancr 587 . . . . . 6 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐹𝑋) ⊆ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))))
8980, 88mpd 15 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ⊆ (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
90 cnheibor.5 . . . . 5 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))
9189, 90sseqtrrdi 3977 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋𝑌)
92 eqid 2729 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
933, 92, 1cnrehmeo 24849 . . . . . . 7 𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽)
94 imaexg 7846 . . . . . . 7 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) → (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ V)
9593, 94ax-mp 5 . . . . . 6 (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ V
9690, 95eqeltri 2824 . . . . 5 𝑌 ∈ V
9796a1i 11 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑌 ∈ V)
98 restabs 23050 . . . 4 ((𝐽 ∈ Top ∧ 𝑋𝑌𝑌 ∈ V) → ((𝐽t 𝑌) ↾t 𝑋) = (𝐽t 𝑋))
992, 91, 97, 98mp3an2i 1468 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) = (𝐽t 𝑋))
100 cnheibor.3 . . 3 𝑇 = (𝐽t 𝑋)
10199, 100eqtr4di 2782 . 2 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) = 𝑇)
10290oveq2i 7360 . . . . 5 (𝐽t 𝑌) = (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
103 ishmeo 23644 . . . . . . . 8 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,)))Homeo𝐽) ↔ (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn ((topGen‘ran (,)) ×t (topGen‘ran (,))))))
10493, 103mpbi 230 . . . . . . 7 (𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn ((topGen‘ran (,)) ×t (topGen‘ran (,)))))
105104simpli 483 . . . . . 6 𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽)
106 iccssre 13332 . . . . . . . . . . 11 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
10752, 106mpancom 688 . . . . . . . . . 10 (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ)
1081, 92rerest 24690 . . . . . . . . . 10 ((-𝑅[,]𝑅) ⊆ ℝ → (𝐽t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
109107, 108syl 17 . . . . . . . . 9 (𝑅 ∈ ℝ → (𝐽t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
110109, 109oveq12d 7367 . . . . . . . 8 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))))
111 retop 24647 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
112 ovex 7382 . . . . . . . . 9 (-𝑅[,]𝑅) ∈ V
113 txrest 23516 . . . . . . . . 9 ((((topGen‘ran (,)) ∈ Top ∧ (topGen‘ran (,)) ∈ Top) ∧ ((-𝑅[,]𝑅) ∈ V ∧ (-𝑅[,]𝑅) ∈ V)) → (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))))
114111, 111, 112, 112, 113mp4an 693 . . . . . . . 8 (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ×t ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)))
115110, 114eqtr4di 2782 . . . . . . 7 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) = (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))))
116 eqid 2729 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) = ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅))
11792, 116icccmp 24712 . . . . . . . . . 10 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ∈ Comp)
11852, 117mpancom 688 . . . . . . . . 9 (𝑅 ∈ ℝ → ((topGen‘ran (,)) ↾t (-𝑅[,]𝑅)) ∈ Comp)
119109, 118eqeltrd 2828 . . . . . . . 8 (𝑅 ∈ ℝ → (𝐽t (-𝑅[,]𝑅)) ∈ Comp)
120 txcmp 23528 . . . . . . . 8 (((𝐽t (-𝑅[,]𝑅)) ∈ Comp ∧ (𝐽t (-𝑅[,]𝑅)) ∈ Comp) → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) ∈ Comp)
121119, 119, 120syl2anc 584 . . . . . . 7 (𝑅 ∈ ℝ → ((𝐽t (-𝑅[,]𝑅)) ×t (𝐽t (-𝑅[,]𝑅))) ∈ Comp)
122115, 121eqeltrrd 2829 . . . . . 6 (𝑅 ∈ ℝ → (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ Comp)
123 imacmp 23282 . . . . . 6 ((𝐹 ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn 𝐽) ∧ (((topGen‘ran (,)) ×t (topGen‘ran (,))) ↾t ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ∈ Comp) → (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))) ∈ Comp)
124105, 122, 123sylancr 587 . . . . 5 (𝑅 ∈ ℝ → (𝐽t (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅)))) ∈ Comp)
125102, 124eqeltrid 2832 . . . 4 (𝑅 ∈ ℝ → (𝐽t 𝑌) ∈ Comp)
126125ad2antrl 728 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → (𝐽t 𝑌) ∈ Comp)
127 imassrn 6022 . . . . . 6 (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ⊆ ran 𝐹
12890, 127eqsstri 3982 . . . . 5 𝑌 ⊆ ran 𝐹
129 f1of 6764 . . . . . 6 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ → 𝐹:(ℝ × ℝ)⟶ℂ)
130 frn 6659 . . . . . 6 (𝐹:(ℝ × ℝ)⟶ℂ → ran 𝐹 ⊆ ℂ)
1314, 129, 130mp2b 10 . . . . 5 ran 𝐹 ⊆ ℂ
132128, 131sstri 3945 . . . 4 𝑌 ⊆ ℂ
133 simpl 482 . . . 4 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ∈ (Clsd‘𝐽))
13415restcldi 23058 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ∈ (Clsd‘𝐽) ∧ 𝑋𝑌) → 𝑋 ∈ (Clsd‘(𝐽t 𝑌)))
135132, 133, 91, 134mp3an2i 1468 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑋 ∈ (Clsd‘(𝐽t 𝑌)))
136 cmpcld 23287 . . 3 (((𝐽t 𝑌) ∈ Comp ∧ 𝑋 ∈ (Clsd‘(𝐽t 𝑌))) → ((𝐽t 𝑌) ↾t 𝑋) ∈ Comp)
137126, 135, 136syl2anc 584 . 2 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → ((𝐽t 𝑌) ↾t 𝑋) ∈ Comp)
138101, 137eqeltrrd 2829 1 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903  cop 4583   class class class wbr 5092   × cxp 5617  ccnv 5618  ran crn 5620  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  cc 11007  cr 11008  ici 11011   + caddc 11012   · cmul 11014  cle 11150  -cneg 11348  (,)cioo 13248  [,]cicc 13251  cre 15004  cim 15005  abscabs 15141  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261  Topctop 22778  Clsdccld 22901   Cn ccn 23109  Compccmp 23271   ×t ctx 23445  Homeochmeo 23638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-cn 23112  df-cnp 23113  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769
This theorem is referenced by:  cnheibor  24852
  Copyright terms: Public domain W3C validator