| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimass2 | Structured version Visualization version GIF version | ||
| Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.) |
| Ref | Expression |
|---|---|
| funimass2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimacnv 6567 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) | |
| 2 | 1 | sseq2d 3970 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵)) ↔ (𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹))) |
| 3 | inss1 4190 | . . . 4 ⊢ (𝐵 ∩ ran 𝐹) ⊆ 𝐵 | |
| 4 | sstr2 3944 | . . . 4 ⊢ ((𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹) → ((𝐵 ∩ ran 𝐹) ⊆ 𝐵 → (𝐹 “ 𝐴) ⊆ 𝐵)) | |
| 5 | 3, 4 | mpi 20 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| 6 | 2, 5 | biimtrdi 253 | . 2 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵)) |
| 7 | imass2 6057 | . 2 ⊢ (𝐴 ⊆ (◡𝐹 “ 𝐵) → (𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵))) | |
| 8 | 6, 7 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3904 ⊆ wss 3905 ◡ccnv 5622 ran crn 5624 “ cima 5626 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 |
| This theorem is referenced by: fvimacnvi 6990 lmhmlsp 20971 2ndcomap 23361 tgqtop 23615 kqreglem1 23644 fmfnfmlem4 23860 fmucnd 24195 cfilucfil 24463 zarcmplem 33847 |
| Copyright terms: Public domain | W3C validator |