![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimass2 | Structured version Visualization version GIF version |
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.) |
Ref | Expression |
---|---|
funimass2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimacnv 6623 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) | |
2 | 1 | sseq2d 4009 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵)) ↔ (𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹))) |
3 | inss1 4223 | . . . 4 ⊢ (𝐵 ∩ ran 𝐹) ⊆ 𝐵 | |
4 | sstr2 3984 | . . . 4 ⊢ ((𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹) → ((𝐵 ∩ ran 𝐹) ⊆ 𝐵 → (𝐹 “ 𝐴) ⊆ 𝐵)) | |
5 | 3, 4 | mpi 20 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹) → (𝐹 “ 𝐴) ⊆ 𝐵) |
6 | 2, 5 | biimtrdi 252 | . 2 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵)) |
7 | imass2 6095 | . 2 ⊢ (𝐴 ⊆ (◡𝐹 “ 𝐵) → (𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵))) | |
8 | 6, 7 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3942 ⊆ wss 3943 ◡ccnv 5668 ran crn 5670 “ cima 5672 Fun wfun 6531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-fun 6539 |
This theorem is referenced by: fvimacnvi 7047 lmhmlsp 20897 2ndcomap 23317 tgqtop 23571 kqreglem1 23600 fmfnfmlem4 23816 fmucnd 24152 cfilucfil 24423 zarcmplem 33391 |
Copyright terms: Public domain | W3C validator |