MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass2 Structured version   Visualization version   GIF version

Theorem funimass2 6264
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass2 ((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)

Proof of Theorem funimass2
StepHypRef Expression
1 funimacnv 6262 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
21sseq2d 3885 . . 3 (Fun 𝐹 → ((𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)) ↔ (𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹)))
3 inss1 4087 . . . 4 (𝐵 ∩ ran 𝐹) ⊆ 𝐵
4 sstr2 3861 . . . 4 ((𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹) → ((𝐵 ∩ ran 𝐹) ⊆ 𝐵 → (𝐹𝐴) ⊆ 𝐵))
53, 4mpi 20 . . 3 ((𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹) → (𝐹𝐴) ⊆ 𝐵)
62, 5syl6bi 245 . 2 (Fun 𝐹 → ((𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵))
7 imass2 5799 . 2 (𝐴 ⊆ (𝐹𝐵) → (𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)))
86, 7impel 498 1 ((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  cin 3824  wss 3825  ccnv 5399  ran crn 5401  cima 5403  Fun wfun 6176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4924  df-opab 4986  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-fun 6184
This theorem is referenced by:  fvimacnvi  6641  lmhmlsp  19533  2ndcomap  21760  tgqtop  22014  kqreglem1  22043  fmfnfmlem4  22259  fmucnd  22594  cfilucfil  22862
  Copyright terms: Public domain W3C validator