| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimass2 | Structured version Visualization version GIF version | ||
| Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.) |
| Ref | Expression |
|---|---|
| funimass2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimacnv 6562 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) | |
| 2 | 1 | sseq2d 3967 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵)) ↔ (𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹))) |
| 3 | inss1 4187 | . . . 4 ⊢ (𝐵 ∩ ran 𝐹) ⊆ 𝐵 | |
| 4 | sstr2 3941 | . . . 4 ⊢ ((𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹) → ((𝐵 ∩ ran 𝐹) ⊆ 𝐵 → (𝐹 “ 𝐴) ⊆ 𝐵)) | |
| 5 | 3, 4 | mpi 20 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ (𝐵 ∩ ran 𝐹) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| 6 | 2, 5 | biimtrdi 253 | . 2 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵)) |
| 7 | imass2 6051 | . 2 ⊢ (𝐴 ⊆ (◡𝐹 “ 𝐵) → (𝐹 “ 𝐴) ⊆ (𝐹 “ (◡𝐹 “ 𝐵))) | |
| 8 | 6, 7 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ 𝐴) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3901 ⊆ wss 3902 ◡ccnv 5615 ran crn 5617 “ cima 5619 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 |
| This theorem is referenced by: fvimacnvi 6985 lmhmlsp 20981 2ndcomap 23371 tgqtop 23625 kqreglem1 23654 fmfnfmlem4 23870 fmucnd 24204 cfilucfil 24472 zarcmplem 33889 |
| Copyright terms: Public domain | W3C validator |