MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass2 Structured version   Visualization version   GIF version

Theorem funimass2 6569
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass2 ((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)

Proof of Theorem funimass2
StepHypRef Expression
1 funimacnv 6567 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
21sseq2d 3970 . . 3 (Fun 𝐹 → ((𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)) ↔ (𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹)))
3 inss1 4190 . . . 4 (𝐵 ∩ ran 𝐹) ⊆ 𝐵
4 sstr2 3944 . . . 4 ((𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹) → ((𝐵 ∩ ran 𝐹) ⊆ 𝐵 → (𝐹𝐴) ⊆ 𝐵))
53, 4mpi 20 . . 3 ((𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹) → (𝐹𝐴) ⊆ 𝐵)
62, 5biimtrdi 253 . 2 (Fun 𝐹 → ((𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵))
7 imass2 6057 . 2 (𝐴 ⊆ (𝐹𝐵) → (𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)))
86, 7impel 505 1 ((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cin 3904  wss 3905  ccnv 5622  ran crn 5624  cima 5626  Fun wfun 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488
This theorem is referenced by:  fvimacnvi  6990  lmhmlsp  20971  2ndcomap  23361  tgqtop  23615  kqreglem1  23644  fmfnfmlem4  23860  fmucnd  24195  cfilucfil  24463  zarcmplem  33847
  Copyright terms: Public domain W3C validator