MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass2 Structured version   Visualization version   GIF version

Theorem funimass2 6629
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass2 ((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)

Proof of Theorem funimass2
StepHypRef Expression
1 funimacnv 6627 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
21sseq2d 4004 . . 3 (Fun 𝐹 → ((𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)) ↔ (𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹)))
3 inss1 4221 . . . 4 (𝐵 ∩ ran 𝐹) ⊆ 𝐵
4 sstr2 3979 . . . 4 ((𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹) → ((𝐵 ∩ ran 𝐹) ⊆ 𝐵 → (𝐹𝐴) ⊆ 𝐵))
53, 4mpi 20 . . 3 ((𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹) → (𝐹𝐴) ⊆ 𝐵)
62, 5biimtrdi 252 . 2 (Fun 𝐹 → ((𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵))
7 imass2 6099 . 2 (𝐴 ⊆ (𝐹𝐵) → (𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)))
86, 7impel 504 1 ((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  cin 3938  wss 3939  ccnv 5669  ran crn 5671  cima 5673  Fun wfun 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pr 5421
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-br 5142  df-opab 5204  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-fun 6543
This theorem is referenced by:  fvimacnvi  7054  lmhmlsp  20936  2ndcomap  23378  tgqtop  23632  kqreglem1  23661  fmfnfmlem4  23877  fmucnd  24213  cfilucfil  24484  zarcmplem  33511
  Copyright terms: Public domain W3C validator