Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass2 Structured version   Visualization version   GIF version

Theorem funimass2 6415
 Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass2 ((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)

Proof of Theorem funimass2
StepHypRef Expression
1 funimacnv 6413 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
21sseq2d 3949 . . 3 (Fun 𝐹 → ((𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)) ↔ (𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹)))
3 inss1 4158 . . . 4 (𝐵 ∩ ran 𝐹) ⊆ 𝐵
4 sstr2 3924 . . . 4 ((𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹) → ((𝐵 ∩ ran 𝐹) ⊆ 𝐵 → (𝐹𝐴) ⊆ 𝐵))
53, 4mpi 20 . . 3 ((𝐹𝐴) ⊆ (𝐵 ∩ ran 𝐹) → (𝐹𝐴) ⊆ 𝐵)
62, 5syl6bi 256 . 2 (Fun 𝐹 → ((𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵))
7 imass2 5936 . 2 (𝐴 ⊆ (𝐹𝐵) → (𝐹𝐴) ⊆ (𝐹 “ (𝐹𝐵)))
86, 7impel 509 1 ((Fun 𝐹𝐴 ⊆ (𝐹𝐵)) → (𝐹𝐴) ⊆ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∩ cin 3882   ⊆ wss 3883  ◡ccnv 5522  ran crn 5524   “ cima 5526  Fun wfun 6326 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-br 5035  df-opab 5097  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-fun 6334 This theorem is referenced by:  fvimacnvi  6809  lmhmlsp  19835  2ndcomap  22104  tgqtop  22358  kqreglem1  22387  fmfnfmlem4  22603  fmucnd  22939  cfilucfil  23207  zarcmplem  31300
 Copyright terms: Public domain W3C validator