![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funressnbrafv2 | Structured version Visualization version GIF version |
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6971. (Contributed by AV, 7-Sep-2022.) |
Ref | Expression |
---|---|
funressnbrafv2 | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 775 | . . 3 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → 𝐵 ∈ 𝑊) | |
2 | eleq1 2832 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) | |
3 | 2 | anbi2d 629 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊))) |
4 | 3 | anbi1d 630 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})))) |
5 | breq2 5170 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝐵)) | |
6 | 4, 5 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) ↔ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵))) |
7 | eqeq2 2752 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵)) | |
8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐵 → (((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))) |
9 | id 22 | . . . . 5 ⊢ (𝐴𝐹𝑥 → 𝐴𝐹𝑥) | |
10 | funressneu 46962 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) | |
11 | 10 | 3expa 1118 | . . . . 5 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) |
12 | tz6.12-1-afv2 47156 | . . . . 5 ⊢ ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) | |
13 | 9, 11, 12 | syl2an2 685 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) |
14 | 8, 13 | vtoclg 3566 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)) |
15 | 1, 14 | mpcom 38 | . 2 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵) |
16 | 15 | ex 412 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃!weu 2571 {csn 4648 class class class wbr 5166 ↾ cres 5702 Fun wfun 6567 ''''cafv2 47123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-dfat 47034 df-afv2 47124 |
This theorem is referenced by: dfatbrafv2b 47160 |
Copyright terms: Public domain | W3C validator |