![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funressnbrafv2 | Structured version Visualization version GIF version |
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6932. (Contributed by AV, 7-Sep-2022.) |
Ref | Expression |
---|---|
funressnbrafv2 | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 773 | . . 3 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → 𝐵 ∈ 𝑊) | |
2 | eleq1 2813 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) | |
3 | 2 | anbi2d 628 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊))) |
4 | 3 | anbi1d 629 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})))) |
5 | breq2 5142 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝐵)) | |
6 | 4, 5 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) ↔ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵))) |
7 | eqeq2 2736 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵)) | |
8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐵 → (((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))) |
9 | id 22 | . . . . 5 ⊢ (𝐴𝐹𝑥 → 𝐴𝐹𝑥) | |
10 | funressneu 46242 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) | |
11 | 10 | 3expa 1115 | . . . . 5 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) |
12 | tz6.12-1-afv2 46434 | . . . . 5 ⊢ ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) | |
13 | 9, 11, 12 | syl2an2 683 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) |
14 | 8, 13 | vtoclg 3535 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)) |
15 | 1, 14 | mpcom 38 | . 2 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵) |
16 | 15 | ex 412 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃!weu 2554 {csn 4620 class class class wbr 5138 ↾ cres 5668 Fun wfun 6527 ''''cafv2 46401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-res 5678 df-iota 6485 df-fun 6535 df-fn 6536 df-dfat 46312 df-afv2 46402 |
This theorem is referenced by: dfatbrafv2b 46438 |
Copyright terms: Public domain | W3C validator |