Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnbrafv2 Structured version   Visualization version   GIF version

Theorem funressnbrafv2 47202
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6938. (Contributed by AV, 7-Sep-2022.)
Assertion
Ref Expression
funressnbrafv2 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))

Proof of Theorem funressnbrafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → 𝐵𝑊)
2 eleq1 2821 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥𝑊𝐵𝑊))
32anbi2d 630 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴𝑉𝑥𝑊) ↔ (𝐴𝑉𝐵𝑊)))
43anbi1d 631 . . . . . 6 (𝑥 = 𝐵 → (((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ↔ ((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}))))
5 breq2 5129 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝐹𝑥𝐴𝐹𝐵))
64, 5anbi12d 632 . . . . 5 (𝑥 = 𝐵 → ((((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) ↔ (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵)))
7 eqeq2 2746 . . . . 5 (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵))
86, 7imbi12d 344 . . . 4 (𝑥 = 𝐵 → (((((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)))
9 id 22 . . . . 5 (𝐴𝐹𝑥𝐴𝐹𝑥)
10 funressneu 47005 . . . . . 6 (((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥)
11103expa 1118 . . . . 5 ((((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥)
12 tz6.12-1-afv2 47199 . . . . 5 ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥)
139, 11, 12syl2an2 686 . . . 4 ((((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥)
148, 13vtoclg 3538 . . 3 (𝐵𝑊 → ((((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))
151, 14mpcom 38 . 2 ((((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)
1615ex 412 1 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ∃!weu 2566  {csn 4608   class class class wbr 5125  cres 5669  Fun wfun 6536  ''''cafv2 47166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-res 5679  df-iota 6495  df-fun 6544  df-fn 6545  df-dfat 47077  df-afv2 47167
This theorem is referenced by:  dfatbrafv2b  47203
  Copyright terms: Public domain W3C validator