Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funressnbrafv2 Structured version   Visualization version   GIF version

Theorem funressnbrafv2 45942
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6942. (Contributed by AV, 7-Sep-2022.)
Assertion
Ref Expression
funressnbrafv2 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))

Proof of Theorem funressnbrafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpllr 774 . . 3 ((((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → 𝐵𝑊)
2 eleq1 2821 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥𝑊𝐵𝑊))
32anbi2d 629 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴𝑉𝑥𝑊) ↔ (𝐴𝑉𝐵𝑊)))
43anbi1d 630 . . . . . 6 (𝑥 = 𝐵 → (((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ↔ ((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴}))))
5 breq2 5152 . . . . . 6 (𝑥 = 𝐵 → (𝐴𝐹𝑥𝐴𝐹𝐵))
64, 5anbi12d 631 . . . . 5 (𝑥 = 𝐵 → ((((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) ↔ (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵)))
7 eqeq2 2744 . . . . 5 (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵))
86, 7imbi12d 344 . . . 4 (𝑥 = 𝐵 → (((((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)))
9 id 22 . . . . 5 (𝐴𝐹𝑥𝐴𝐹𝑥)
10 funressneu 45747 . . . . . 6 (((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥)
11103expa 1118 . . . . 5 ((((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥)
12 tz6.12-1-afv2 45939 . . . . 5 ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥)
139, 11, 12syl2an2 684 . . . 4 ((((𝐴𝑉𝑥𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥)
148, 13vtoclg 3556 . . 3 (𝐵𝑊 → ((((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))
151, 14mpcom 38 . 2 ((((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)
1615ex 413 1 (((𝐴𝑉𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  ∃!weu 2562  {csn 4628   class class class wbr 5148  cres 5678  Fun wfun 6537  ''''cafv2 45906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-dfat 45817  df-afv2 45907
This theorem is referenced by:  dfatbrafv2b  45943
  Copyright terms: Public domain W3C validator