| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funressnbrafv2 | Structured version Visualization version GIF version | ||
| Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6909. (Contributed by AV, 7-Sep-2022.) |
| Ref | Expression |
|---|---|
| funressnbrafv2 | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 775 | . . 3 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → 𝐵 ∈ 𝑊) | |
| 2 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) | |
| 3 | 2 | anbi2d 630 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊))) |
| 4 | 3 | anbi1d 631 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})))) |
| 5 | breq2 5111 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝐵)) | |
| 6 | 4, 5 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) ↔ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵))) |
| 7 | eqeq2 2741 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵)) | |
| 8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐵 → (((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))) |
| 9 | id 22 | . . . . 5 ⊢ (𝐴𝐹𝑥 → 𝐴𝐹𝑥) | |
| 10 | funressneu 47048 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) | |
| 11 | 10 | 3expa 1118 | . . . . 5 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) |
| 12 | tz6.12-1-afv2 47242 | . . . . 5 ⊢ ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) | |
| 13 | 9, 11, 12 | syl2an2 686 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) |
| 14 | 8, 13 | vtoclg 3520 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)) |
| 15 | 1, 14 | mpcom 38 | . 2 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵) |
| 16 | 15 | ex 412 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 {csn 4589 class class class wbr 5107 ↾ cres 5640 Fun wfun 6505 ''''cafv2 47209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-dfat 47120 df-afv2 47210 |
| This theorem is referenced by: dfatbrafv2b 47246 |
| Copyright terms: Public domain | W3C validator |