![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funressnbrafv2 | Structured version Visualization version GIF version |
Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6893. (Contributed by AV, 7-Sep-2022.) |
Ref | Expression |
---|---|
funressnbrafv2 | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 774 | . . 3 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → 𝐵 ∈ 𝑊) | |
2 | eleq1 2825 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) | |
3 | 2 | anbi2d 629 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊))) |
4 | 3 | anbi1d 630 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ↔ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})))) |
5 | breq2 5109 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝐵)) | |
6 | 4, 5 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) ↔ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵))) |
7 | eqeq2 2748 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = 𝐵)) | |
8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐵 → (((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) ↔ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵))) |
9 | id 22 | . . . . 5 ⊢ (𝐴𝐹𝑥 → 𝐴𝐹𝑥) | |
10 | funressneu 45271 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) | |
11 | 10 | 3expa 1118 | . . . . 5 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → ∃!𝑥 𝐴𝐹𝑥) |
12 | tz6.12-1-afv2 45463 | . . . . 5 ⊢ ((𝐴𝐹𝑥 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) | |
13 | 9, 11, 12 | syl2an2 684 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝑥) → (𝐹''''𝐴) = 𝑥) |
14 | 8, 13 | vtoclg 3525 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵)) |
15 | 1, 14 | mpcom 38 | . 2 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐹𝐵) → (𝐹''''𝐴) = 𝐵) |
16 | 15 | ex 413 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃!weu 2566 {csn 4586 class class class wbr 5105 ↾ cres 5635 Fun wfun 6490 ''''cafv2 45430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-res 5645 df-iota 6448 df-fun 6498 df-fn 6499 df-dfat 45341 df-afv2 45431 |
This theorem is referenced by: dfatbrafv2b 45467 |
Copyright terms: Public domain | W3C validator |