MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreg2wsplem Structured version   Visualization version   GIF version

Theorem fusgreg2wsplem 27710
Description: Lemma for fusgreg2wsp 27713 and related theorems. (Contributed by AV, 8-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
fusgreg2wsplem (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺   𝑁,𝑎,𝑤   𝑤,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝑀(𝑤,𝑝,𝑎)   𝑁(𝑝)   𝑉(𝑤,𝑝)

Proof of Theorem fusgreg2wsplem
StepHypRef Expression
1 eqeq2 2836 . . . . 5 (𝑎 = 𝑁 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑁))
21rabbidv 3402 . . . 4 (𝑎 = 𝑁 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})
3 fusgreg2wsp.m . . . 4 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
4 ovex 6942 . . . . 5 (2 WSPathsN 𝐺) ∈ V
54rabex 5039 . . . 4 {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ∈ V
62, 3, 5fvmpt 6533 . . 3 (𝑁𝑉 → (𝑀𝑁) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})
76eleq2d 2892 . 2 (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ 𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}))
8 fveq1 6436 . . . 4 (𝑤 = 𝑝 → (𝑤‘1) = (𝑝‘1))
98eqeq1d 2827 . . 3 (𝑤 = 𝑝 → ((𝑤‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁))
109elrab 3585 . 2 (𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))
117, 10syl6bb 279 1 (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  {crab 3121  cmpt 4954  cfv 6127  (class class class)co 6910  1c1 10260  2c2 11413  Vtxcvtx 26301   WSPathsN cwwspthsn 27134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-ov 6913
This theorem is referenced by:  fusgr2wsp2nb  27711  fusgreg2wsp  27713  2wspmdisj  27714
  Copyright terms: Public domain W3C validator