MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreg2wsplem Structured version   Visualization version   GIF version

Theorem fusgreg2wsplem 30235
Description: Lemma for fusgreg2wsp 30238 and related theorems. (Contributed by AV, 8-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
fusgreg2wsplem (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺   𝑁,𝑎,𝑤   𝑤,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝑀(𝑤,𝑝,𝑎)   𝑁(𝑝)   𝑉(𝑤,𝑝)

Proof of Theorem fusgreg2wsplem
StepHypRef Expression
1 eqeq2 2741 . . . . 5 (𝑎 = 𝑁 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑁))
21rabbidv 3410 . . . 4 (𝑎 = 𝑁 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})
3 fusgreg2wsp.m . . . 4 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
4 ovex 7402 . . . . 5 (2 WSPathsN 𝐺) ∈ V
54rabex 5289 . . . 4 {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ∈ V
62, 3, 5fvmpt 6950 . . 3 (𝑁𝑉 → (𝑀𝑁) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})
76eleq2d 2814 . 2 (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ 𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}))
8 fveq1 6839 . . . 4 (𝑤 = 𝑝 → (𝑤‘1) = (𝑝‘1))
98eqeq1d 2731 . . 3 (𝑤 = 𝑝 → ((𝑤‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁))
109elrab 3656 . 2 (𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))
117, 10bitrdi 287 1 (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3402  cmpt 5183  cfv 6499  (class class class)co 7369  1c1 11045  2c2 12217  Vtxcvtx 28899   WSPathsN cwwspthsn 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372
This theorem is referenced by:  fusgr2wsp2nb  30236  fusgreg2wsp  30238  2wspmdisj  30239
  Copyright terms: Public domain W3C validator