![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgreg2wsplem | Structured version Visualization version GIF version |
Description: Lemma for fusgreg2wsp 29589 and related theorems. (Contributed by AV, 8-Jan-2022.) |
Ref | Expression |
---|---|
frgrhash2wsp.v | ⢠ð = (Vtxâðº) |
fusgreg2wsp.m | ⢠ð = (ð â ð ⊠{ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð}) |
Ref | Expression |
---|---|
fusgreg2wsplem | ⢠(ð â ð â (ð â (ðâð) â (ð â (2 WSPathsN ðº) ⧠(ðâ1) = ð))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2745 | . . . . 5 ⢠(ð = ð â ((ð€â1) = ð â (ð€â1) = ð)) | |
2 | 1 | rabbidv 3441 | . . . 4 ⢠(ð = ð â {ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð} = {ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð}) |
3 | fusgreg2wsp.m | . . . 4 ⢠ð = (ð â ð ⊠{ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð}) | |
4 | ovex 7442 | . . . . 5 ⢠(2 WSPathsN ðº) â V | |
5 | 4 | rabex 5333 | . . . 4 ⢠{ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð} â V |
6 | 2, 3, 5 | fvmpt 6999 | . . 3 ⢠(ð â ð â (ðâð) = {ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð}) |
7 | 6 | eleq2d 2820 | . 2 ⢠(ð â ð â (ð â (ðâð) â ð â {ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð})) |
8 | fveq1 6891 | . . . 4 ⢠(ð€ = ð â (ð€â1) = (ðâ1)) | |
9 | 8 | eqeq1d 2735 | . . 3 ⢠(ð€ = ð â ((ð€â1) = ð â (ðâ1) = ð)) |
10 | 9 | elrab 3684 | . 2 ⢠(ð â {ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð} â (ð â (2 WSPathsN ðº) ⧠(ðâ1) = ð)) |
11 | 7, 10 | bitrdi 287 | 1 ⢠(ð â ð â (ð â (ðâð) â (ð â (2 WSPathsN ðº) ⧠(ðâ1) = ð))) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â wb 205 ⧠wa 397 = wceq 1542 â wcel 2107 {crab 3433 ⊠cmpt 5232 âcfv 6544 (class class class)co 7409 1c1 11111 2c2 12267 Vtxcvtx 28256 WSPathsN cwwspthsn 29082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 |
This theorem is referenced by: fusgr2wsp2nb 29587 fusgreg2wsp 29589 2wspmdisj 29590 |
Copyright terms: Public domain | W3C validator |