Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fusgreg2wsplem | Structured version Visualization version GIF version |
Description: Lemma for fusgreg2wsp 28700 and related theorems. (Contributed by AV, 8-Jan-2022.) |
Ref | Expression |
---|---|
frgrhash2wsp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgreg2wsp.m | ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) |
Ref | Expression |
---|---|
fusgreg2wsplem | ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2750 | . . . . 5 ⊢ (𝑎 = 𝑁 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑁)) | |
2 | 1 | rabbidv 3414 | . . . 4 ⊢ (𝑎 = 𝑁 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}) |
3 | fusgreg2wsp.m | . . . 4 ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) | |
4 | ovex 7308 | . . . . 5 ⊢ (2 WSPathsN 𝐺) ∈ V | |
5 | 4 | rabex 5256 | . . . 4 ⊢ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ∈ V |
6 | 2, 3, 5 | fvmpt 6875 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑀‘𝑁) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}) |
7 | 6 | eleq2d 2824 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ 𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})) |
8 | fveq1 6773 | . . . 4 ⊢ (𝑤 = 𝑝 → (𝑤‘1) = (𝑝‘1)) | |
9 | 8 | eqeq1d 2740 | . . 3 ⊢ (𝑤 = 𝑝 → ((𝑤‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁)) |
10 | 9 | elrab 3624 | . 2 ⊢ (𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)) |
11 | 7, 10 | bitrdi 287 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 1c1 10872 2c2 12028 Vtxcvtx 27366 WSPathsN cwwspthsn 28193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 |
This theorem is referenced by: fusgr2wsp2nb 28698 fusgreg2wsp 28700 2wspmdisj 28701 |
Copyright terms: Public domain | W3C validator |