| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgreg2wsplem | Structured version Visualization version GIF version | ||
| Description: Lemma for fusgreg2wsp 30272 and related theorems. (Contributed by AV, 8-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrhash2wsp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| fusgreg2wsp.m | ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) |
| Ref | Expression |
|---|---|
| fusgreg2wsplem | ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2742 | . . . . 5 ⊢ (𝑎 = 𝑁 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑁)) | |
| 2 | 1 | rabbidv 3416 | . . . 4 ⊢ (𝑎 = 𝑁 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}) |
| 3 | fusgreg2wsp.m | . . . 4 ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) | |
| 4 | ovex 7423 | . . . . 5 ⊢ (2 WSPathsN 𝐺) ∈ V | |
| 5 | 4 | rabex 5297 | . . . 4 ⊢ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ∈ V |
| 6 | 2, 3, 5 | fvmpt 6971 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑀‘𝑁) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}) |
| 7 | 6 | eleq2d 2815 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ 𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})) |
| 8 | fveq1 6860 | . . . 4 ⊢ (𝑤 = 𝑝 → (𝑤‘1) = (𝑝‘1)) | |
| 9 | 8 | eqeq1d 2732 | . . 3 ⊢ (𝑤 = 𝑝 → ((𝑤‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁)) |
| 10 | 9 | elrab 3662 | . 2 ⊢ (𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)) |
| 11 | 7, 10 | bitrdi 287 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 1c1 11076 2c2 12248 Vtxcvtx 28930 WSPathsN cwwspthsn 29765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: fusgr2wsp2nb 30270 fusgreg2wsp 30272 2wspmdisj 30273 |
| Copyright terms: Public domain | W3C validator |