![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgreg2wsplem | Structured version Visualization version GIF version |
Description: Lemma for fusgreg2wsp 30266 and related theorems. (Contributed by AV, 8-Jan-2022.) |
Ref | Expression |
---|---|
frgrhash2wsp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgreg2wsp.m | ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) |
Ref | Expression |
---|---|
fusgreg2wsplem | ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2738 | . . . . 5 ⊢ (𝑎 = 𝑁 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑁)) | |
2 | 1 | rabbidv 3427 | . . . 4 ⊢ (𝑎 = 𝑁 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}) |
3 | fusgreg2wsp.m | . . . 4 ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) | |
4 | ovex 7449 | . . . . 5 ⊢ (2 WSPathsN 𝐺) ∈ V | |
5 | 4 | rabex 5331 | . . . 4 ⊢ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ∈ V |
6 | 2, 3, 5 | fvmpt 7001 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑀‘𝑁) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}) |
7 | 6 | eleq2d 2812 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ 𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})) |
8 | fveq1 6892 | . . . 4 ⊢ (𝑤 = 𝑝 → (𝑤‘1) = (𝑝‘1)) | |
9 | 8 | eqeq1d 2728 | . . 3 ⊢ (𝑤 = 𝑝 → ((𝑤‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁)) |
10 | 9 | elrab 3680 | . 2 ⊢ (𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)) |
11 | 7, 10 | bitrdi 286 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 ↦ cmpt 5228 ‘cfv 6546 (class class class)co 7416 1c1 11150 2c2 12313 Vtxcvtx 28929 WSPathsN cwwspthsn 29759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 |
This theorem is referenced by: fusgr2wsp2nb 30264 fusgreg2wsp 30266 2wspmdisj 30267 |
Copyright terms: Public domain | W3C validator |