MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreg2wsplem Structured version   Visualization version   GIF version

Theorem fusgreg2wsplem 30182
Description: Lemma for fusgreg2wsp 30185 and related theorems. (Contributed by AV, 8-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎 ∈ 𝑉 ↩ {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑎})
Assertion
Ref Expression
fusgreg2wsplem (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑀,𝐺   𝑁,𝑎,𝑀   𝑀,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝑀(𝑀,𝑝,𝑎)   𝑁(𝑝)   𝑉(𝑀,𝑝)

Proof of Theorem fusgreg2wsplem
StepHypRef Expression
1 eqeq2 2737 . . . . 5 (𝑎 = 𝑁 → ((𝑀‘1) = 𝑎 ↔ (𝑀‘1) = 𝑁))
21rabbidv 3427 . . . 4 (𝑎 = 𝑁 → {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑎} = {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑁})
3 fusgreg2wsp.m . . . 4 𝑀 = (𝑎 ∈ 𝑉 ↩ {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑎})
4 ovex 7446 . . . . 5 (2 WSPathsN 𝐺) ∈ V
54rabex 5330 . . . 4 {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑁} ∈ V
62, 3, 5fvmpt 6998 . . 3 (𝑁 ∈ 𝑉 → (𝑀‘𝑁) = {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑁})
76eleq2d 2811 . 2 (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ 𝑝 ∈ {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑁}))
8 fveq1 6889 . . . 4 (𝑀 = 𝑝 → (𝑀‘1) = (𝑝‘1))
98eqeq1d 2727 . . 3 (𝑀 = 𝑝 → ((𝑀‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁))
109elrab 3676 . 2 (𝑝 ∈ {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))
117, 10bitrdi 286 1 (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {crab 3419   ↩ cmpt 5227  â€˜cfv 6543  (class class class)co 7413  1c1 11134  2c2 12292  Vtxcvtx 28848   WSPathsN cwwspthsn 29678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7416
This theorem is referenced by:  fusgr2wsp2nb  30183  fusgreg2wsp  30185  2wspmdisj  30186
  Copyright terms: Public domain W3C validator