MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreg2wsplem Structured version   Visualization version   GIF version

Theorem fusgreg2wsplem 29586
Description: Lemma for fusgreg2wsp 29589 and related theorems. (Contributed by AV, 8-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎 ∈ 𝑉 ↩ {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑎})
Assertion
Ref Expression
fusgreg2wsplem (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑀,𝐺   𝑁,𝑎,𝑀   𝑀,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝑀(𝑀,𝑝,𝑎)   𝑁(𝑝)   𝑉(𝑀,𝑝)

Proof of Theorem fusgreg2wsplem
StepHypRef Expression
1 eqeq2 2745 . . . . 5 (𝑎 = 𝑁 → ((𝑀‘1) = 𝑎 ↔ (𝑀‘1) = 𝑁))
21rabbidv 3441 . . . 4 (𝑎 = 𝑁 → {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑎} = {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑁})
3 fusgreg2wsp.m . . . 4 𝑀 = (𝑎 ∈ 𝑉 ↩ {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑎})
4 ovex 7442 . . . . 5 (2 WSPathsN 𝐺) ∈ V
54rabex 5333 . . . 4 {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑁} ∈ V
62, 3, 5fvmpt 6999 . . 3 (𝑁 ∈ 𝑉 → (𝑀‘𝑁) = {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑁})
76eleq2d 2820 . 2 (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ 𝑝 ∈ {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑁}))
8 fveq1 6891 . . . 4 (𝑀 = 𝑝 → (𝑀‘1) = (𝑝‘1))
98eqeq1d 2735 . . 3 (𝑀 = 𝑝 → ((𝑀‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁))
109elrab 3684 . 2 (𝑝 ∈ {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))
117, 10bitrdi 287 1 (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {crab 3433   ↩ cmpt 5232  â€˜cfv 6544  (class class class)co 7409  1c1 11111  2c2 12267  Vtxcvtx 28256   WSPathsN cwwspthsn 29082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412
This theorem is referenced by:  fusgr2wsp2nb  29587  fusgreg2wsp  29589  2wspmdisj  29590
  Copyright terms: Public domain W3C validator