![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgreg2wsplem | Structured version Visualization version GIF version |
Description: Lemma for fusgreg2wsp 30365 and related theorems. (Contributed by AV, 8-Jan-2022.) |
Ref | Expression |
---|---|
frgrhash2wsp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgreg2wsp.m | ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) |
Ref | Expression |
---|---|
fusgreg2wsplem | ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2747 | . . . . 5 ⊢ (𝑎 = 𝑁 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑁)) | |
2 | 1 | rabbidv 3441 | . . . 4 ⊢ (𝑎 = 𝑁 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}) |
3 | fusgreg2wsp.m | . . . 4 ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) | |
4 | ovex 7464 | . . . . 5 ⊢ (2 WSPathsN 𝐺) ∈ V | |
5 | 4 | rabex 5345 | . . . 4 ⊢ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ∈ V |
6 | 2, 3, 5 | fvmpt 7016 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑀‘𝑁) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}) |
7 | 6 | eleq2d 2825 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ 𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})) |
8 | fveq1 6906 | . . . 4 ⊢ (𝑤 = 𝑝 → (𝑤‘1) = (𝑝‘1)) | |
9 | 8 | eqeq1d 2737 | . . 3 ⊢ (𝑤 = 𝑝 → ((𝑤‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁)) |
10 | 9 | elrab 3695 | . 2 ⊢ (𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)) |
11 | 7, 10 | bitrdi 287 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 1c1 11154 2c2 12319 Vtxcvtx 29028 WSPathsN cwwspthsn 29858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 |
This theorem is referenced by: fusgr2wsp2nb 30363 fusgreg2wsp 30365 2wspmdisj 30366 |
Copyright terms: Public domain | W3C validator |