| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgreg2wsplem | Structured version Visualization version GIF version | ||
| Description: Lemma for fusgreg2wsp 30308 and related theorems. (Contributed by AV, 8-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrhash2wsp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| fusgreg2wsp.m | ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) |
| Ref | Expression |
|---|---|
| fusgreg2wsplem | ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2743 | . . . . 5 ⊢ (𝑎 = 𝑁 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑁)) | |
| 2 | 1 | rabbidv 3402 | . . . 4 ⊢ (𝑎 = 𝑁 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}) |
| 3 | fusgreg2wsp.m | . . . 4 ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) | |
| 4 | ovex 7374 | . . . . 5 ⊢ (2 WSPathsN 𝐺) ∈ V | |
| 5 | 4 | rabex 5272 | . . . 4 ⊢ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ∈ V |
| 6 | 2, 3, 5 | fvmpt 6924 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑀‘𝑁) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}) |
| 7 | 6 | eleq2d 2817 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ 𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})) |
| 8 | fveq1 6816 | . . . 4 ⊢ (𝑤 = 𝑝 → (𝑤‘1) = (𝑝‘1)) | |
| 9 | 8 | eqeq1d 2733 | . . 3 ⊢ (𝑤 = 𝑝 → ((𝑤‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁)) |
| 10 | 9 | elrab 3642 | . 2 ⊢ (𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)) |
| 11 | 7, 10 | bitrdi 287 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 1c1 11002 2c2 12175 Vtxcvtx 28969 WSPathsN cwwspthsn 29801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 |
| This theorem is referenced by: fusgr2wsp2nb 30306 fusgreg2wsp 30308 2wspmdisj 30309 |
| Copyright terms: Public domain | W3C validator |