Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreg2wsplem Structured version   Visualization version   GIF version

Theorem fusgreg2wsplem 28096
 Description: Lemma for fusgreg2wsp 28099 and related theorems. (Contributed by AV, 8-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
fusgreg2wsplem (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺   𝑁,𝑎,𝑤   𝑤,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝑀(𝑤,𝑝,𝑎)   𝑁(𝑝)   𝑉(𝑤,𝑝)

Proof of Theorem fusgreg2wsplem
StepHypRef Expression
1 eqeq2 2833 . . . . 5 (𝑎 = 𝑁 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑁))
21rabbidv 3457 . . . 4 (𝑎 = 𝑁 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})
3 fusgreg2wsp.m . . . 4 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
4 ovex 7163 . . . . 5 (2 WSPathsN 𝐺) ∈ V
54rabex 5208 . . . 4 {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ∈ V
62, 3, 5fvmpt 6741 . . 3 (𝑁𝑉 → (𝑀𝑁) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})
76eleq2d 2897 . 2 (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ 𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}))
8 fveq1 6642 . . . 4 (𝑤 = 𝑝 → (𝑤‘1) = (𝑝‘1))
98eqeq1d 2823 . . 3 (𝑤 = 𝑝 → ((𝑤‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁))
109elrab 3657 . 2 (𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))
117, 10syl6bb 290 1 (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  {crab 3130   ↦ cmpt 5119  ‘cfv 6328  (class class class)co 7130  1c1 10515  2c2 11670  Vtxcvtx 26767   WSPathsN cwwspthsn 27592 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7133 This theorem is referenced by:  fusgr2wsp2nb  28097  fusgreg2wsp  28099  2wspmdisj  28100
 Copyright terms: Public domain W3C validator