![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgreg2wsplem | Structured version Visualization version GIF version |
Description: Lemma for fusgreg2wsp 30185 and related theorems. (Contributed by AV, 8-Jan-2022.) |
Ref | Expression |
---|---|
frgrhash2wsp.v | ⢠ð = (Vtxâðº) |
fusgreg2wsp.m | ⢠ð = (ð â ð ⊠{ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð}) |
Ref | Expression |
---|---|
fusgreg2wsplem | ⢠(ð â ð â (ð â (ðâð) â (ð â (2 WSPathsN ðº) â§ (ðâ1) = ð))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2737 | . . . . 5 ⢠(ð = ð â ((ð€â1) = ð â (ð€â1) = ð)) | |
2 | 1 | rabbidv 3427 | . . . 4 ⢠(ð = ð â {ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð} = {ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð}) |
3 | fusgreg2wsp.m | . . . 4 ⢠ð = (ð â ð ⊠{ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð}) | |
4 | ovex 7446 | . . . . 5 ⢠(2 WSPathsN ðº) â V | |
5 | 4 | rabex 5330 | . . . 4 ⢠{ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð} â V |
6 | 2, 3, 5 | fvmpt 6998 | . . 3 ⢠(ð â ð â (ðâð) = {ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð}) |
7 | 6 | eleq2d 2811 | . 2 ⢠(ð â ð â (ð â (ðâð) â ð â {ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð})) |
8 | fveq1 6889 | . . . 4 ⢠(ð€ = ð â (ð€â1) = (ðâ1)) | |
9 | 8 | eqeq1d 2727 | . . 3 ⢠(ð€ = ð â ((ð€â1) = ð â (ðâ1) = ð)) |
10 | 9 | elrab 3676 | . 2 ⢠(ð â {ð€ â (2 WSPathsN ðº) ⣠(ð€â1) = ð} â (ð â (2 WSPathsN ðº) â§ (ðâ1) = ð)) |
11 | 7, 10 | bitrdi 286 | 1 ⢠(ð â ð â (ð â (ðâð) â (ð â (2 WSPathsN ðº) â§ (ðâ1) = ð))) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â wb 205 â§ wa 394 = wceq 1533 â wcel 2098 {crab 3419 ⊠cmpt 5227 âcfv 6543 (class class class)co 7413 1c1 11134 2c2 12292 Vtxcvtx 28848 WSPathsN cwwspthsn 29678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7416 |
This theorem is referenced by: fusgr2wsp2nb 30183 fusgreg2wsp 30185 2wspmdisj 30186 |
Copyright terms: Public domain | W3C validator |