MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreg2wsplem Structured version   Visualization version   GIF version

Theorem fusgreg2wsplem 30334
Description: Lemma for fusgreg2wsp 30337 and related theorems. (Contributed by AV, 8-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
fusgreg2wsplem (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺   𝑁,𝑎,𝑤   𝑤,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝑀(𝑤,𝑝,𝑎)   𝑁(𝑝)   𝑉(𝑤,𝑝)

Proof of Theorem fusgreg2wsplem
StepHypRef Expression
1 eqeq2 2745 . . . . 5 (𝑎 = 𝑁 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑁))
21rabbidv 3403 . . . 4 (𝑎 = 𝑁 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})
3 fusgreg2wsp.m . . . 4 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
4 ovex 7388 . . . . 5 (2 WSPathsN 𝐺) ∈ V
54rabex 5281 . . . 4 {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ∈ V
62, 3, 5fvmpt 6938 . . 3 (𝑁𝑉 → (𝑀𝑁) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁})
76eleq2d 2819 . 2 (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ 𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁}))
8 fveq1 6830 . . . 4 (𝑤 = 𝑝 → (𝑤‘1) = (𝑝‘1))
98eqeq1d 2735 . . 3 (𝑤 = 𝑝 → ((𝑤‘1) = 𝑁 ↔ (𝑝‘1) = 𝑁))
109elrab 3643 . 2 (𝑝 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑁} ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁))
117, 10bitrdi 287 1 (𝑁𝑉 → (𝑝 ∈ (𝑀𝑁) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {crab 3396  cmpt 5176  cfv 6489  (class class class)co 7355  1c1 11018  2c2 12191  Vtxcvtx 28995   WSPathsN cwwspthsn 29827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358
This theorem is referenced by:  fusgr2wsp2nb  30335  fusgreg2wsp  30337  2wspmdisj  30338
  Copyright terms: Public domain W3C validator