Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fusgreg2wsp | Structured version Visualization version GIF version |
Description: In a finite simple graph, the set of all paths of length 2 is the union of all the paths of length 2 over the vertices which are in the middle of such a path. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.) |
Ref | Expression |
---|---|
frgrhash2wsp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgreg2wsp.m | ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) |
Ref | Expression |
---|---|
fusgreg2wsp | ⊢ (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspthsswwlkn 27803 | . . . . . . . 8 ⊢ (2 WSPathsN 𝐺) ⊆ (2 WWalksN 𝐺) | |
2 | 1 | sseli 3888 | . . . . . . 7 ⊢ (𝑝 ∈ (2 WSPathsN 𝐺) → 𝑝 ∈ (2 WWalksN 𝐺)) |
3 | frgrhash2wsp.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | midwwlks2s3 27837 | . . . . . . 7 ⊢ (𝑝 ∈ (2 WWalksN 𝐺) → ∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥) |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝑝 ∈ (2 WSPathsN 𝐺) → ∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥) |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) → ∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥)) |
7 | 6 | pm4.71rd 566 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) ↔ (∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺)))) |
8 | ancom 464 | . . . . . . 7 ⊢ ((𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ ((𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺))) | |
9 | 8 | rexbii 3175 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ ∃𝑥 ∈ 𝑉 ((𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺))) |
10 | r19.41v 3265 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑉 ((𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺)) ↔ (∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺))) | |
11 | 9, 10 | bitr2i 279 | . . . . 5 ⊢ ((∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺)) ↔ ∃𝑥 ∈ 𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥)) |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → ((∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺)) ↔ ∃𝑥 ∈ 𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥))) |
13 | fusgreg2wsp.m | . . . . . . . 8 ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) | |
14 | 3, 13 | fusgreg2wsplem 28217 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑥) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥))) |
15 | 14 | bicomd 226 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → ((𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ 𝑝 ∈ (𝑀‘𝑥))) |
16 | 15 | adantl 485 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑥 ∈ 𝑉) → ((𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ 𝑝 ∈ (𝑀‘𝑥))) |
17 | 16 | rexbidva 3220 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (∃𝑥 ∈ 𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ ∃𝑥 ∈ 𝑉 𝑝 ∈ (𝑀‘𝑥))) |
18 | 7, 12, 17 | 3bitrd 308 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 𝑝 ∈ (𝑀‘𝑥))) |
19 | eliun 4887 | . . 3 ⊢ (𝑝 ∈ ∪ 𝑥 ∈ 𝑉 (𝑀‘𝑥) ↔ ∃𝑥 ∈ 𝑉 𝑝 ∈ (𝑀‘𝑥)) | |
20 | 18, 19 | bitr4di 292 | . 2 ⊢ (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) ↔ 𝑝 ∈ ∪ 𝑥 ∈ 𝑉 (𝑀‘𝑥))) |
21 | 20 | eqrdv 2756 | 1 ⊢ (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 {crab 3074 ∪ ciun 4883 ↦ cmpt 5112 ‘cfv 6335 (class class class)co 7150 1c1 10576 2c2 11729 Vtxcvtx 26888 FinUSGraphcfusgr 27205 WWalksN cwwlksn 27711 WSPathsN cwwspthsn 27713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 df-concat 13970 df-s1 13997 df-s2 14257 df-s3 14258 df-wwlks 27715 df-wwlksn 27716 df-wspthsn 27718 |
This theorem is referenced by: fusgreghash2wsp 28222 |
Copyright terms: Public domain | W3C validator |