Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreg2wsp Structured version   Visualization version   GIF version

Theorem fusgreg2wsp 28220
 Description: In a finite simple graph, the set of all paths of length 2 is the union of all the paths of length 2 over the vertices which are in the middle of such a path. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
fusgreg2wsp (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = 𝑥𝑉 (𝑀𝑥))
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺,𝑎,𝑥   𝑥,𝑉,𝑎   𝑥,𝑤
Allowed substitution hints:   𝑀(𝑥,𝑤,𝑎)   𝑉(𝑤)

Proof of Theorem fusgreg2wsp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 wspthsswwlkn 27803 . . . . . . . 8 (2 WSPathsN 𝐺) ⊆ (2 WWalksN 𝐺)
21sseli 3888 . . . . . . 7 (𝑝 ∈ (2 WSPathsN 𝐺) → 𝑝 ∈ (2 WWalksN 𝐺))
3 frgrhash2wsp.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
43midwwlks2s3 27837 . . . . . . 7 (𝑝 ∈ (2 WWalksN 𝐺) → ∃𝑥𝑉 (𝑝‘1) = 𝑥)
52, 4syl 17 . . . . . 6 (𝑝 ∈ (2 WSPathsN 𝐺) → ∃𝑥𝑉 (𝑝‘1) = 𝑥)
65a1i 11 . . . . 5 (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) → ∃𝑥𝑉 (𝑝‘1) = 𝑥))
76pm4.71rd 566 . . . 4 (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) ↔ (∃𝑥𝑉 (𝑝‘1) = 𝑥𝑝 ∈ (2 WSPathsN 𝐺))))
8 ancom 464 . . . . . . 7 ((𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ ((𝑝‘1) = 𝑥𝑝 ∈ (2 WSPathsN 𝐺)))
98rexbii 3175 . . . . . 6 (∃𝑥𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ ∃𝑥𝑉 ((𝑝‘1) = 𝑥𝑝 ∈ (2 WSPathsN 𝐺)))
10 r19.41v 3265 . . . . . 6 (∃𝑥𝑉 ((𝑝‘1) = 𝑥𝑝 ∈ (2 WSPathsN 𝐺)) ↔ (∃𝑥𝑉 (𝑝‘1) = 𝑥𝑝 ∈ (2 WSPathsN 𝐺)))
119, 10bitr2i 279 . . . . 5 ((∃𝑥𝑉 (𝑝‘1) = 𝑥𝑝 ∈ (2 WSPathsN 𝐺)) ↔ ∃𝑥𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥))
1211a1i 11 . . . 4 (𝐺 ∈ FinUSGraph → ((∃𝑥𝑉 (𝑝‘1) = 𝑥𝑝 ∈ (2 WSPathsN 𝐺)) ↔ ∃𝑥𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥)))
13 fusgreg2wsp.m . . . . . . . 8 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
143, 13fusgreg2wsplem 28217 . . . . . . 7 (𝑥𝑉 → (𝑝 ∈ (𝑀𝑥) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥)))
1514bicomd 226 . . . . . 6 (𝑥𝑉 → ((𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ 𝑝 ∈ (𝑀𝑥)))
1615adantl 485 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑥𝑉) → ((𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ 𝑝 ∈ (𝑀𝑥)))
1716rexbidva 3220 . . . 4 (𝐺 ∈ FinUSGraph → (∃𝑥𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ ∃𝑥𝑉 𝑝 ∈ (𝑀𝑥)))
187, 12, 173bitrd 308 . . 3 (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥𝑉 𝑝 ∈ (𝑀𝑥)))
19 eliun 4887 . . 3 (𝑝 𝑥𝑉 (𝑀𝑥) ↔ ∃𝑥𝑉 𝑝 ∈ (𝑀𝑥))
2018, 19bitr4di 292 . 2 (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) ↔ 𝑝 𝑥𝑉 (𝑀𝑥)))
2120eqrdv 2756 1 (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = 𝑥𝑉 (𝑀𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∃wrex 3071  {crab 3074  ∪ ciun 4883   ↦ cmpt 5112  ‘cfv 6335  (class class class)co 7150  1c1 10576  2c2 11729  Vtxcvtx 26888  FinUSGraphcfusgr 27205   WWalksN cwwlksn 27711   WSPathsN cwwspthsn 27713 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-concat 13970  df-s1 13997  df-s2 14257  df-s3 14258  df-wwlks 27715  df-wwlksn 27716  df-wspthsn 27718 This theorem is referenced by:  fusgreghash2wsp  28222
 Copyright terms: Public domain W3C validator