![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgreg2wsp | Structured version Visualization version GIF version |
Description: In a finite simple graph, the set of all paths of length 2 is the union of all the paths of length 2 over the vertices which are in the middle of such a path. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.) |
Ref | Expression |
---|---|
frgrhash2wsp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
fusgreg2wsp.m | ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) |
Ref | Expression |
---|---|
fusgreg2wsp | ⊢ (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspthsswwlkn 29852 | . . . . . . . 8 ⊢ (2 WSPathsN 𝐺) ⊆ (2 WWalksN 𝐺) | |
2 | 1 | sseli 3975 | . . . . . . 7 ⊢ (𝑝 ∈ (2 WSPathsN 𝐺) → 𝑝 ∈ (2 WWalksN 𝐺)) |
3 | frgrhash2wsp.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | midwwlks2s3 29886 | . . . . . . 7 ⊢ (𝑝 ∈ (2 WWalksN 𝐺) → ∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥) |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝑝 ∈ (2 WSPathsN 𝐺) → ∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥) |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) → ∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥)) |
7 | 6 | pm4.71rd 561 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) ↔ (∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺)))) |
8 | ancom 459 | . . . . . . 7 ⊢ ((𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ ((𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺))) | |
9 | 8 | rexbii 3084 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ ∃𝑥 ∈ 𝑉 ((𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺))) |
10 | r19.41v 3179 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑉 ((𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺)) ↔ (∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺))) | |
11 | 9, 10 | bitr2i 275 | . . . . 5 ⊢ ((∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺)) ↔ ∃𝑥 ∈ 𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥)) |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → ((∃𝑥 ∈ 𝑉 (𝑝‘1) = 𝑥 ∧ 𝑝 ∈ (2 WSPathsN 𝐺)) ↔ ∃𝑥 ∈ 𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥))) |
13 | fusgreg2wsp.m | . . . . . . . 8 ⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) | |
14 | 3, 13 | fusgreg2wsplem 30266 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → (𝑝 ∈ (𝑀‘𝑥) ↔ (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥))) |
15 | 14 | bicomd 222 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 → ((𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ 𝑝 ∈ (𝑀‘𝑥))) |
16 | 15 | adantl 480 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑥 ∈ 𝑉) → ((𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ 𝑝 ∈ (𝑀‘𝑥))) |
17 | 16 | rexbidva 3167 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → (∃𝑥 ∈ 𝑉 (𝑝 ∈ (2 WSPathsN 𝐺) ∧ (𝑝‘1) = 𝑥) ↔ ∃𝑥 ∈ 𝑉 𝑝 ∈ (𝑀‘𝑥))) |
18 | 7, 12, 17 | 3bitrd 304 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 𝑝 ∈ (𝑀‘𝑥))) |
19 | eliun 5005 | . . 3 ⊢ (𝑝 ∈ ∪ 𝑥 ∈ 𝑉 (𝑀‘𝑥) ↔ ∃𝑥 ∈ 𝑉 𝑝 ∈ (𝑀‘𝑥)) | |
20 | 18, 19 | bitr4di 288 | . 2 ⊢ (𝐺 ∈ FinUSGraph → (𝑝 ∈ (2 WSPathsN 𝐺) ↔ 𝑝 ∈ ∪ 𝑥 ∈ 𝑉 (𝑀‘𝑥))) |
21 | 20 | eqrdv 2724 | 1 ⊢ (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 (𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 {crab 3419 ∪ ciun 5001 ↦ cmpt 5236 ‘cfv 6554 (class class class)co 7424 1c1 11159 2c2 12319 Vtxcvtx 28932 FinUSGraphcfusgr 29252 WWalksN cwwlksn 29760 WSPathsN cwwspthsn 29762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-fzo 13682 df-hash 14348 df-word 14523 df-concat 14579 df-s1 14604 df-s2 14857 df-s3 14858 df-wwlks 29764 df-wwlksn 29765 df-wspthsn 29767 |
This theorem is referenced by: fusgreghash2wsp 30271 |
Copyright terms: Public domain | W3C validator |