MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wspmdisj Structured version   Visualization version   GIF version

Theorem 2wspmdisj 30356
Description: The sets of paths of length 2 with a given vertex in the middle are distinct for different vertices in the middle. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
2wspmdisj Disj 𝑥𝑉 (𝑀𝑥)
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺,𝑎,𝑥   𝑥,𝑉,𝑎,𝑤   𝑥,𝑀   𝑤,𝑉
Allowed substitution hints:   𝑀(𝑤,𝑎)

Proof of Theorem 2wspmdisj
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 868 . . . . 5 (𝑥 = 𝑦 → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
21a1d 25 . . . 4 (𝑥 = 𝑦 → ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)))
3 frgrhash2wsp.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
4 fusgreg2wsp.m . . . . . . . . . . . . . 14 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
53, 4fusgreg2wsplem 30352 . . . . . . . . . . . . 13 (𝑦𝑉 → (𝑡 ∈ (𝑀𝑦) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦)))
65adantl 481 . . . . . . . . . . . 12 ((𝑥𝑉𝑦𝑉) → (𝑡 ∈ (𝑀𝑦) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦)))
76adantr 480 . . . . . . . . . . 11 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → (𝑡 ∈ (𝑀𝑦) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦)))
83, 4fusgreg2wsplem 30352 . . . . . . . . . . . . . 14 (𝑥𝑉 → (𝑡 ∈ (𝑀𝑥) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑥)))
9 eqtr2 2761 . . . . . . . . . . . . . . . . . 18 (((𝑡‘1) = 𝑥 ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦)
109expcom 413 . . . . . . . . . . . . . . . . 17 ((𝑡‘1) = 𝑦 → ((𝑡‘1) = 𝑥𝑥 = 𝑦))
1110adantl 481 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → ((𝑡‘1) = 𝑥𝑥 = 𝑦))
1211com12 32 . . . . . . . . . . . . . . 15 ((𝑡‘1) = 𝑥 → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦))
1312adantl 481 . . . . . . . . . . . . . 14 ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦))
148, 13biimtrdi 253 . . . . . . . . . . . . 13 (𝑥𝑉 → (𝑡 ∈ (𝑀𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦)))
1514adantr 480 . . . . . . . . . . . 12 ((𝑥𝑉𝑦𝑉) → (𝑡 ∈ (𝑀𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦)))
1615imp 406 . . . . . . . . . . 11 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦))
177, 16sylbid 240 . . . . . . . . . 10 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → (𝑡 ∈ (𝑀𝑦) → 𝑥 = 𝑦))
1817con3d 152 . . . . . . . . 9 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → (¬ 𝑥 = 𝑦 → ¬ 𝑡 ∈ (𝑀𝑦)))
1918impancom 451 . . . . . . . 8 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → (𝑡 ∈ (𝑀𝑥) → ¬ 𝑡 ∈ (𝑀𝑦)))
2019ralrimiv 3145 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → ∀𝑡 ∈ (𝑀𝑥) ¬ 𝑡 ∈ (𝑀𝑦))
21 disj 4450 . . . . . . 7 (((𝑀𝑥) ∩ (𝑀𝑦)) = ∅ ↔ ∀𝑡 ∈ (𝑀𝑥) ¬ 𝑡 ∈ (𝑀𝑦))
2220, 21sylibr 234 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)
2322olcd 875 . . . . 5 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
2423expcom 413 . . . 4 𝑥 = 𝑦 → ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)))
252, 24pm2.61i 182 . . 3 ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
2625rgen2 3199 . 2 𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)
27 fveq2 6906 . . 3 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀𝑦))
2827disjor 5125 . 2 (Disj 𝑥𝑉 (𝑀𝑥) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
2926, 28mpbir 231 1 Disj 𝑥𝑉 (𝑀𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  {crab 3436  cin 3950  c0 4333  Disj wdisj 5110  cmpt 5225  cfv 6561  (class class class)co 7431  1c1 11156  2c2 12321  Vtxcvtx 29013   WSPathsN cwwspthsn 29848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434
This theorem is referenced by:  fusgreghash2wsp  30357
  Copyright terms: Public domain W3C validator