MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wspmdisj Structured version   Visualization version   GIF version

Theorem 2wspmdisj 29579
Description: The sets of paths of length 2 with a given vertex in the middle are distinct for different vertices in the middle. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎 ∈ 𝑉 ↩ {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑎})
Assertion
Ref Expression
2wspmdisj Disj 𝑥 ∈ 𝑉 (𝑀‘𝑥)
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑀,𝐺,𝑎,𝑥   𝑥,𝑉,𝑎,𝑀   𝑥,𝑀   𝑀,𝑉
Allowed substitution hints:   𝑀(𝑀,𝑎)

Proof of Theorem 2wspmdisj
Dummy variables 𝑊 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 865 . . . . 5 (𝑥 = 𝑊 → (𝑥 = 𝑊 √ ((𝑀‘𝑥) ∩ (𝑀‘𝑊)) = ∅))
21a1d 25 . . . 4 (𝑥 = 𝑊 → ((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) → (𝑥 = 𝑊 √ ((𝑀‘𝑥) ∩ (𝑀‘𝑊)) = ∅)))
3 frgrhash2wsp.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
4 fusgreg2wsp.m . . . . . . . . . . . . . 14 𝑀 = (𝑎 ∈ 𝑉 ↩ {𝑀 ∈ (2 WSPathsN 𝐺) ∣ (𝑀‘1) = 𝑎})
53, 4fusgreg2wsplem 29575 . . . . . . . . . . . . 13 (𝑊 ∈ 𝑉 → (𝑡 ∈ (𝑀‘𝑊) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑊)))
65adantl 482 . . . . . . . . . . . 12 ((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) → (𝑡 ∈ (𝑀‘𝑊) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑊)))
76adantr 481 . . . . . . . . . . 11 (((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) ∧ 𝑡 ∈ (𝑀‘𝑥)) → (𝑡 ∈ (𝑀‘𝑊) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑊)))
83, 4fusgreg2wsplem 29575 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝑉 → (𝑡 ∈ (𝑀‘𝑥) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑥)))
9 eqtr2 2756 . . . . . . . . . . . . . . . . . 18 (((𝑡‘1) = 𝑥 ∧ (𝑡‘1) = 𝑊) → 𝑥 = 𝑊)
109expcom 414 . . . . . . . . . . . . . . . . 17 ((𝑡‘1) = 𝑊 → ((𝑡‘1) = 𝑥 → 𝑥 = 𝑊))
1110adantl 482 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑊) → ((𝑡‘1) = 𝑥 → 𝑥 = 𝑊))
1211com12 32 . . . . . . . . . . . . . . 15 ((𝑡‘1) = 𝑥 → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑊) → 𝑥 = 𝑊))
1312adantl 482 . . . . . . . . . . . . . 14 ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑊) → 𝑥 = 𝑊))
148, 13syl6bi 252 . . . . . . . . . . . . 13 (𝑥 ∈ 𝑉 → (𝑡 ∈ (𝑀‘𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑊) → 𝑥 = 𝑊)))
1514adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) → (𝑡 ∈ (𝑀‘𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑊) → 𝑥 = 𝑊)))
1615imp 407 . . . . . . . . . . 11 (((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) ∧ 𝑡 ∈ (𝑀‘𝑥)) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑊) → 𝑥 = 𝑊))
177, 16sylbid 239 . . . . . . . . . 10 (((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) ∧ 𝑡 ∈ (𝑀‘𝑥)) → (𝑡 ∈ (𝑀‘𝑊) → 𝑥 = 𝑊))
1817con3d 152 . . . . . . . . 9 (((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) ∧ 𝑡 ∈ (𝑀‘𝑥)) → (¬ 𝑥 = 𝑊 → ¬ 𝑡 ∈ (𝑀‘𝑊)))
1918impancom 452 . . . . . . . 8 (((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) ∧ ¬ 𝑥 = 𝑊) → (𝑡 ∈ (𝑀‘𝑥) → ¬ 𝑡 ∈ (𝑀‘𝑊)))
2019ralrimiv 3145 . . . . . . 7 (((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) ∧ ¬ 𝑥 = 𝑊) → ∀𝑡 ∈ (𝑀‘𝑥) ¬ 𝑡 ∈ (𝑀‘𝑊))
21 disj 4446 . . . . . . 7 (((𝑀‘𝑥) ∩ (𝑀‘𝑊)) = ∅ ↔ ∀𝑡 ∈ (𝑀‘𝑥) ¬ 𝑡 ∈ (𝑀‘𝑊))
2220, 21sylibr 233 . . . . . 6 (((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) ∧ ¬ 𝑥 = 𝑊) → ((𝑀‘𝑥) ∩ (𝑀‘𝑊)) = ∅)
2322olcd 872 . . . . 5 (((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) ∧ ¬ 𝑥 = 𝑊) → (𝑥 = 𝑊 √ ((𝑀‘𝑥) ∩ (𝑀‘𝑊)) = ∅))
2423expcom 414 . . . 4 (¬ 𝑥 = 𝑊 → ((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) → (𝑥 = 𝑊 √ ((𝑀‘𝑥) ∩ (𝑀‘𝑊)) = ∅)))
252, 24pm2.61i 182 . . 3 ((𝑥 ∈ 𝑉 ∧ 𝑊 ∈ 𝑉) → (𝑥 = 𝑊 √ ((𝑀‘𝑥) ∩ (𝑀‘𝑊)) = ∅))
2625rgen2 3197 . 2 ∀𝑥 ∈ 𝑉 ∀𝑊 ∈ 𝑉 (𝑥 = 𝑊 √ ((𝑀‘𝑥) ∩ (𝑀‘𝑊)) = ∅)
27 fveq2 6888 . . 3 (𝑥 = 𝑊 → (𝑀‘𝑥) = (𝑀‘𝑊))
2827disjor 5127 . 2 (Disj 𝑥 ∈ 𝑉 (𝑀‘𝑥) ↔ ∀𝑥 ∈ 𝑉 ∀𝑊 ∈ 𝑉 (𝑥 = 𝑊 √ ((𝑀‘𝑥) ∩ (𝑀‘𝑊)) = ∅))
2926, 28mpbir 230 1 Disj 𝑥 ∈ 𝑉 (𝑀‘𝑥)
Colors of variables: wff setvar class
Syntax hints:  Â¬ wn 3   → wi 4   ↔ wb 205   ∧ wa 396   √ wo 845   = wceq 1541   ∈ wcel 2106  âˆ€wral 3061  {crab 3432   ∩ cin 3946  âˆ…c0 4321  Disj wdisj 5112   ↩ cmpt 5230  â€˜cfv 6540  (class class class)co 7405  1c1 11107  2c2 12263  Vtxcvtx 28245   WSPathsN cwwspthsn 29071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408
This theorem is referenced by:  fusgreghash2wsp  29580
  Copyright terms: Public domain W3C validator