MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wspmdisj Structured version   Visualization version   GIF version

Theorem 2wspmdisj 30266
Description: The sets of paths of length 2 with a given vertex in the middle are distinct for different vertices in the middle. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
2wspmdisj Disj 𝑥𝑉 (𝑀𝑥)
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺,𝑎,𝑥   𝑥,𝑉,𝑎,𝑤   𝑥,𝑀   𝑤,𝑉
Allowed substitution hints:   𝑀(𝑤,𝑎)

Proof of Theorem 2wspmdisj
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 867 . . . . 5 (𝑥 = 𝑦 → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
21a1d 25 . . . 4 (𝑥 = 𝑦 → ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)))
3 frgrhash2wsp.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
4 fusgreg2wsp.m . . . . . . . . . . . . . 14 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
53, 4fusgreg2wsplem 30262 . . . . . . . . . . . . 13 (𝑦𝑉 → (𝑡 ∈ (𝑀𝑦) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦)))
65adantl 481 . . . . . . . . . . . 12 ((𝑥𝑉𝑦𝑉) → (𝑡 ∈ (𝑀𝑦) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦)))
76adantr 480 . . . . . . . . . . 11 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → (𝑡 ∈ (𝑀𝑦) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦)))
83, 4fusgreg2wsplem 30262 . . . . . . . . . . . . . 14 (𝑥𝑉 → (𝑡 ∈ (𝑀𝑥) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑥)))
9 eqtr2 2750 . . . . . . . . . . . . . . . . . 18 (((𝑡‘1) = 𝑥 ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦)
109expcom 413 . . . . . . . . . . . . . . . . 17 ((𝑡‘1) = 𝑦 → ((𝑡‘1) = 𝑥𝑥 = 𝑦))
1110adantl 481 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → ((𝑡‘1) = 𝑥𝑥 = 𝑦))
1211com12 32 . . . . . . . . . . . . . . 15 ((𝑡‘1) = 𝑥 → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦))
1312adantl 481 . . . . . . . . . . . . . 14 ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦))
148, 13biimtrdi 253 . . . . . . . . . . . . 13 (𝑥𝑉 → (𝑡 ∈ (𝑀𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦)))
1514adantr 480 . . . . . . . . . . . 12 ((𝑥𝑉𝑦𝑉) → (𝑡 ∈ (𝑀𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦)))
1615imp 406 . . . . . . . . . . 11 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦))
177, 16sylbid 240 . . . . . . . . . 10 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → (𝑡 ∈ (𝑀𝑦) → 𝑥 = 𝑦))
1817con3d 152 . . . . . . . . 9 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → (¬ 𝑥 = 𝑦 → ¬ 𝑡 ∈ (𝑀𝑦)))
1918impancom 451 . . . . . . . 8 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → (𝑡 ∈ (𝑀𝑥) → ¬ 𝑡 ∈ (𝑀𝑦)))
2019ralrimiv 3124 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → ∀𝑡 ∈ (𝑀𝑥) ¬ 𝑡 ∈ (𝑀𝑦))
21 disj 4413 . . . . . . 7 (((𝑀𝑥) ∩ (𝑀𝑦)) = ∅ ↔ ∀𝑡 ∈ (𝑀𝑥) ¬ 𝑡 ∈ (𝑀𝑦))
2220, 21sylibr 234 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)
2322olcd 874 . . . . 5 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
2423expcom 413 . . . 4 𝑥 = 𝑦 → ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)))
252, 24pm2.61i 182 . . 3 ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
2625rgen2 3177 . 2 𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)
27 fveq2 6858 . . 3 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀𝑦))
2827disjor 5089 . 2 (Disj 𝑥𝑉 (𝑀𝑥) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
2926, 28mpbir 231 1 Disj 𝑥𝑉 (𝑀𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cin 3913  c0 4296  Disj wdisj 5074  cmpt 5188  cfv 6511  (class class class)co 7387  1c1 11069  2c2 12241  Vtxcvtx 28923   WSPathsN cwwspthsn 29758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390
This theorem is referenced by:  fusgreghash2wsp  30267
  Copyright terms: Public domain W3C validator