MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wspmdisj Structured version   Visualization version   GIF version

Theorem 2wspmdisj 30273
Description: The sets of paths of length 2 with a given vertex in the middle are distinct for different vertices in the middle. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 18-May-2021.) (Proof shortened by AV, 10-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
2wspmdisj Disj 𝑥𝑉 (𝑀𝑥)
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺,𝑎,𝑥   𝑥,𝑉,𝑎,𝑤   𝑥,𝑀   𝑤,𝑉
Allowed substitution hints:   𝑀(𝑤,𝑎)

Proof of Theorem 2wspmdisj
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 867 . . . . 5 (𝑥 = 𝑦 → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
21a1d 25 . . . 4 (𝑥 = 𝑦 → ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)))
3 frgrhash2wsp.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
4 fusgreg2wsp.m . . . . . . . . . . . . . 14 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
53, 4fusgreg2wsplem 30269 . . . . . . . . . . . . 13 (𝑦𝑉 → (𝑡 ∈ (𝑀𝑦) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦)))
65adantl 481 . . . . . . . . . . . 12 ((𝑥𝑉𝑦𝑉) → (𝑡 ∈ (𝑀𝑦) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦)))
76adantr 480 . . . . . . . . . . 11 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → (𝑡 ∈ (𝑀𝑦) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦)))
83, 4fusgreg2wsplem 30269 . . . . . . . . . . . . . 14 (𝑥𝑉 → (𝑡 ∈ (𝑀𝑥) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑥)))
9 eqtr2 2751 . . . . . . . . . . . . . . . . . 18 (((𝑡‘1) = 𝑥 ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦)
109expcom 413 . . . . . . . . . . . . . . . . 17 ((𝑡‘1) = 𝑦 → ((𝑡‘1) = 𝑥𝑥 = 𝑦))
1110adantl 481 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → ((𝑡‘1) = 𝑥𝑥 = 𝑦))
1211com12 32 . . . . . . . . . . . . . . 15 ((𝑡‘1) = 𝑥 → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦))
1312adantl 481 . . . . . . . . . . . . . 14 ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦))
148, 13biimtrdi 253 . . . . . . . . . . . . 13 (𝑥𝑉 → (𝑡 ∈ (𝑀𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦)))
1514adantr 480 . . . . . . . . . . . 12 ((𝑥𝑉𝑦𝑉) → (𝑡 ∈ (𝑀𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦)))
1615imp 406 . . . . . . . . . . 11 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦))
177, 16sylbid 240 . . . . . . . . . 10 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → (𝑡 ∈ (𝑀𝑦) → 𝑥 = 𝑦))
1817con3d 152 . . . . . . . . 9 (((𝑥𝑉𝑦𝑉) ∧ 𝑡 ∈ (𝑀𝑥)) → (¬ 𝑥 = 𝑦 → ¬ 𝑡 ∈ (𝑀𝑦)))
1918impancom 451 . . . . . . . 8 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → (𝑡 ∈ (𝑀𝑥) → ¬ 𝑡 ∈ (𝑀𝑦)))
2019ralrimiv 3125 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → ∀𝑡 ∈ (𝑀𝑥) ¬ 𝑡 ∈ (𝑀𝑦))
21 disj 4416 . . . . . . 7 (((𝑀𝑥) ∩ (𝑀𝑦)) = ∅ ↔ ∀𝑡 ∈ (𝑀𝑥) ¬ 𝑡 ∈ (𝑀𝑦))
2220, 21sylibr 234 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)
2322olcd 874 . . . . 5 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
2423expcom 413 . . . 4 𝑥 = 𝑦 → ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)))
252, 24pm2.61i 182 . . 3 ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
2625rgen2 3178 . 2 𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)
27 fveq2 6861 . . 3 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀𝑦))
2827disjor 5092 . 2 (Disj 𝑥𝑉 (𝑀𝑥) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
2926, 28mpbir 231 1 Disj 𝑥𝑉 (𝑀𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cin 3916  c0 4299  Disj wdisj 5077  cmpt 5191  cfv 6514  (class class class)co 7390  1c1 11076  2c2 12248  Vtxcvtx 28930   WSPathsN cwwspthsn 29765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393
This theorem is referenced by:  fusgreghash2wsp  30274
  Copyright terms: Public domain W3C validator