![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrhash2wsp | Structured version Visualization version GIF version |
Description: The number of simple paths of length 2 is n*(n-1) in a friendship graph with n vertices. This corresponds to the proof of claim 3 in [Huneke] p. 2: "... the paths of length two in G: by assumption there are ( n 2 ) such paths.". However, Huneke counts undirected paths, so obtains the result ((𝑛C2) = ((𝑛 · (𝑛 − 1)) / 2)), whereas we count directed paths, obtaining twice that number. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 10-Jan-2022.) |
Ref | Expression |
---|---|
frgrhash2wsp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
frgrhash2wsp | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11560 | . . . . 5 ⊢ 2 ∈ ℕ | |
2 | frgrhash2wsp.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | wspniunwspnon 27384 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝐺 ∈ FriendGraph ) → (2 WSPathsN 𝐺) = ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
4 | 1, 3 | mpan 686 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (2 WSPathsN 𝐺) = ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
5 | 4 | fveq2d 6545 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (♯‘(2 WSPathsN 𝐺)) = (♯‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = (♯‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))) |
7 | simpr 485 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin) | |
8 | eqid 2794 | . . 3 ⊢ (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝑎}) | |
9 | 2 | eleq1i 2872 | . . . . . 6 ⊢ (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin) |
10 | wspthnonfi 27383 | . . . . . 6 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) | |
11 | 9, 10 | sylbi 218 | . . . . 5 ⊢ (𝑉 ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
12 | 11 | adantl 482 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
13 | 12 | 3ad2ant1 1126 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
14 | 2wspiundisj 27424 | . . . 4 ⊢ Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) | |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
16 | 2wspdisj 27423 | . . . 4 ⊢ Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) | |
17 | 16 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) → Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
18 | simplll 771 | . . . . 5 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝐺 ∈ FriendGraph ) | |
19 | simpr 485 | . . . . . 6 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
20 | eldifi 4026 | . . . . . 6 ⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏 ∈ 𝑉) | |
21 | 19, 20 | anim12i 612 | . . . . 5 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
22 | eldifsni 4631 | . . . . . . 7 ⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏 ≠ 𝑎) | |
23 | 22 | necomd 3038 | . . . . . 6 ⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑎 ≠ 𝑏) |
24 | 23 | adantl 482 | . . . . 5 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝑎 ≠ 𝑏) |
25 | 2 | frgr2wsp1 27793 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
26 | 18, 21, 24, 25 | syl3anc 1364 | . . . 4 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
27 | 26 | 3impa 1103 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
28 | 7, 8, 13, 15, 17, 27 | hash2iun1dif1 15012 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
29 | 6, 28 | eqtrd 2830 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2080 ≠ wne 2983 ∖ cdif 3858 {csn 4474 ∪ ciun 4827 Disj wdisj 4932 ‘cfv 6228 (class class class)co 7019 Fincfn 8360 1c1 10387 · cmul 10391 − cmin 10719 ℕcn 11488 2c2 11542 ♯chash 13540 Vtxcvtx 26464 WSPathsN cwwspthsn 27288 WSPathsNOn cwwspthsnon 27289 FriendGraph cfrgr 27719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-inf2 8953 ax-ac2 9734 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 ax-pre-sup 10464 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ifp 1056 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rmo 3112 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-disj 4933 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-se 5406 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-isom 6237 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-1st 7548 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-2o 7957 df-oadd 7960 df-er 8142 df-map 8261 df-pm 8262 df-en 8361 df-dom 8362 df-sdom 8363 df-fin 8364 df-sup 8755 df-oi 8823 df-dju 9179 df-card 9217 df-ac 9391 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-div 11148 df-nn 11489 df-2 11550 df-3 11551 df-n0 11748 df-xnn0 11818 df-z 11832 df-uz 12094 df-rp 12240 df-fz 12743 df-fzo 12884 df-seq 13220 df-exp 13280 df-hash 13541 df-word 13708 df-concat 13769 df-s1 13794 df-s2 14046 df-s3 14047 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-sum 14877 df-edg 26516 df-uhgr 26526 df-upgr 26550 df-umgr 26551 df-uspgr 26618 df-usgr 26619 df-wlks 27064 df-wlkson 27065 df-trls 27156 df-trlson 27157 df-pths 27179 df-spths 27180 df-pthson 27181 df-spthson 27182 df-wwlks 27290 df-wwlksn 27291 df-wwlksnon 27292 df-wspthsn 27293 df-wspthsnon 27294 df-frgr 27720 |
This theorem is referenced by: frrusgrord0 27803 |
Copyright terms: Public domain | W3C validator |