| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrhash2wsp | Structured version Visualization version GIF version | ||
| Description: The number of simple paths of length 2 is n*(n-1) in a friendship graph with n vertices. This corresponds to the proof of claim 3 in [Huneke] p. 2: "... the paths of length two in G: by assumption there are ( n 2 ) such paths.". However, Huneke counts undirected paths, so obtains the result ((𝑛C2) = ((𝑛 · (𝑛 − 1)) / 2)), whereas we count directed paths, obtaining twice that number. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 10-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrhash2wsp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| frgrhash2wsp | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12237 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 2 | frgrhash2wsp.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | wspniunwspnon 29904 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝐺 ∈ FriendGraph ) → (2 WSPathsN 𝐺) = ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
| 4 | 1, 3 | mpan 690 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (2 WSPathsN 𝐺) = ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
| 5 | 4 | fveq2d 6844 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (♯‘(2 WSPathsN 𝐺)) = (♯‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = (♯‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))) |
| 7 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin) | |
| 8 | eqid 2729 | . . 3 ⊢ (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝑎}) | |
| 9 | 2 | eleq1i 2819 | . . . . . 6 ⊢ (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin) |
| 10 | wspthnonfi 29903 | . . . . . 6 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) | |
| 11 | 9, 10 | sylbi 217 | . . . . 5 ⊢ (𝑉 ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
| 13 | 12 | 3ad2ant1 1133 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
| 14 | 2wspiundisj 29944 | . . . 4 ⊢ Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
| 16 | 2wspdisj 29943 | . . . 4 ⊢ Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) → Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
| 18 | simplll 774 | . . . . 5 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝐺 ∈ FriendGraph ) | |
| 19 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 20 | eldifi 4090 | . . . . . 6 ⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏 ∈ 𝑉) | |
| 21 | 19, 20 | anim12i 613 | . . . . 5 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
| 22 | eldifsni 4750 | . . . . . . 7 ⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏 ≠ 𝑎) | |
| 23 | 22 | necomd 2980 | . . . . . 6 ⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑎 ≠ 𝑏) |
| 24 | 23 | adantl 481 | . . . . 5 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝑎 ≠ 𝑏) |
| 25 | 2 | frgr2wsp1 30310 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
| 26 | 18, 21, 24, 25 | syl3anc 1373 | . . . 4 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
| 27 | 26 | 3impa 1109 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
| 28 | 7, 8, 13, 15, 17, 27 | hash2iun1dif1 15767 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
| 29 | 6, 28 | eqtrd 2764 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 ∪ ciun 4951 Disj wdisj 5069 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 1c1 11047 · cmul 11051 − cmin 11383 ℕcn 12164 2c2 12219 ♯chash 14273 Vtxcvtx 28977 WSPathsN cwwspthsn 29809 WSPathsNOn cwwspthsnon 29810 FriendGraph cfrgr 30238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-ac2 10394 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-dju 9832 df-card 9870 df-ac 10047 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-n0 12421 df-xnn0 12494 df-z 12508 df-uz 12772 df-rp 12930 df-fz 13447 df-fzo 13594 df-seq 13945 df-exp 14005 df-hash 14274 df-word 14457 df-concat 14514 df-s1 14539 df-s2 14791 df-s3 14792 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15431 df-sum 15630 df-edg 29029 df-uhgr 29039 df-upgr 29063 df-umgr 29064 df-uspgr 29131 df-usgr 29132 df-wlks 29581 df-wlkson 29582 df-trls 29672 df-trlson 29673 df-pths 29695 df-spths 29696 df-pthson 29697 df-spthson 29698 df-wwlks 29811 df-wwlksn 29812 df-wwlksnon 29813 df-wspthsn 29814 df-wspthsnon 29815 df-frgr 30239 |
| This theorem is referenced by: frrusgrord0 30320 |
| Copyright terms: Public domain | W3C validator |