MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrhash2wsp Structured version   Visualization version   GIF version

Theorem frgrhash2wsp 30313
Description: The number of simple paths of length 2 is n*(n-1) in a friendship graph with n vertices. This corresponds to the proof of claim 3 in [Huneke] p. 2: "... the paths of length two in G: by assumption there are ( n 2 ) such paths.". However, Huneke counts undirected paths, so obtains the result ((𝑛C2) = ((𝑛 · (𝑛 − 1)) / 2)), whereas we count directed paths, obtaining twice that number. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 10-Jan-2022.)
Hypothesis
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrhash2wsp ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))

Proof of Theorem frgrhash2wsp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 12313 . . . . 5 2 ∈ ℕ
2 frgrhash2wsp.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32wspniunwspnon 29905 . . . . 5 ((2 ∈ ℕ ∧ 𝐺 ∈ FriendGraph ) → (2 WSPathsN 𝐺) = 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
41, 3mpan 690 . . . 4 (𝐺 ∈ FriendGraph → (2 WSPathsN 𝐺) = 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
54fveq2d 6880 . . 3 (𝐺 ∈ FriendGraph → (♯‘(2 WSPathsN 𝐺)) = (♯‘ 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)))
65adantr 480 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = (♯‘ 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)))
7 simpr 484 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin)
8 eqid 2735 . . 3 (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝑎})
92eleq1i 2825 . . . . . 6 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
10 wspthnonfi 29904 . . . . . 6 ((Vtx‘𝐺) ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
119, 10sylbi 217 . . . . 5 (𝑉 ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
1211adantl 481 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
13123ad2ant1 1133 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
14 2wspiundisj 29945 . . . 4 Disj 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)
1514a1i 11 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → Disj 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
16 2wspdisj 29944 . . . 4 Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)
1716a1i 11 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) → Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
18 simplll 774 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝐺 ∈ FriendGraph )
19 simpr 484 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) → 𝑎𝑉)
20 eldifi 4106 . . . . . 6 (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏𝑉)
2119, 20anim12i 613 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎𝑉𝑏𝑉))
22 eldifsni 4766 . . . . . . 7 (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏𝑎)
2322necomd 2987 . . . . . 6 (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑎𝑏)
2423adantl 481 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝑎𝑏)
252frgr2wsp1 30311 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1)
2618, 21, 24, 25syl3anc 1373 . . . 4 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1)
27263impa 1109 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1)
287, 8, 13, 15, 17, 27hash2iun1dif1 15840 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘ 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))
296, 28eqtrd 2770 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  {csn 4601   ciun 4967  Disj wdisj 5086  cfv 6531  (class class class)co 7405  Fincfn 8959  1c1 11130   · cmul 11134  cmin 11466  cn 12240  2c2 12295  chash 14348  Vtxcvtx 28975   WSPathsN cwwspthsn 29810   WSPathsNOn cwwspthsnon 29811   FriendGraph cfrgr 30239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-dju 9915  df-card 9953  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-edg 29027  df-uhgr 29037  df-upgr 29061  df-umgr 29062  df-uspgr 29129  df-usgr 29130  df-wlks 29579  df-wlkson 29580  df-trls 29672  df-trlson 29673  df-pths 29696  df-spths 29697  df-pthson 29698  df-spthson 29699  df-wwlks 29812  df-wwlksn 29813  df-wwlksnon 29814  df-wspthsn 29815  df-wspthsnon 29816  df-frgr 30240
This theorem is referenced by:  frrusgrord0  30321
  Copyright terms: Public domain W3C validator