MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrhash2wsp Structured version   Visualization version   GIF version

Theorem frgrhash2wsp 28925
Description: The number of simple paths of length 2 is n*(n-1) in a friendship graph with n vertices. This corresponds to the proof of claim 3 in [Huneke] p. 2: "... the paths of length two in G: by assumption there are ( n 2 ) such paths.". However, Huneke counts undirected paths, so obtains the result ((𝑛C2) = ((𝑛 · (𝑛 − 1)) / 2)), whereas we count directed paths, obtaining twice that number. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 10-Jan-2022.)
Hypothesis
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrhash2wsp ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))

Proof of Theorem frgrhash2wsp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 12139 . . . . 5 2 ∈ ℕ
2 frgrhash2wsp.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32wspniunwspnon 28517 . . . . 5 ((2 ∈ ℕ ∧ 𝐺 ∈ FriendGraph ) → (2 WSPathsN 𝐺) = 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
41, 3mpan 687 . . . 4 (𝐺 ∈ FriendGraph → (2 WSPathsN 𝐺) = 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
54fveq2d 6823 . . 3 (𝐺 ∈ FriendGraph → (♯‘(2 WSPathsN 𝐺)) = (♯‘ 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)))
65adantr 481 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = (♯‘ 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)))
7 simpr 485 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin)
8 eqid 2736 . . 3 (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝑎})
92eleq1i 2827 . . . . . 6 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
10 wspthnonfi 28516 . . . . . 6 ((Vtx‘𝐺) ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
119, 10sylbi 216 . . . . 5 (𝑉 ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
1211adantl 482 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
13123ad2ant1 1132 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
14 2wspiundisj 28557 . . . 4 Disj 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)
1514a1i 11 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → Disj 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
16 2wspdisj 28556 . . . 4 Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)
1716a1i 11 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) → Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
18 simplll 772 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝐺 ∈ FriendGraph )
19 simpr 485 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) → 𝑎𝑉)
20 eldifi 4072 . . . . . 6 (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏𝑉)
2119, 20anim12i 613 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎𝑉𝑏𝑉))
22 eldifsni 4736 . . . . . . 7 (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏𝑎)
2322necomd 2996 . . . . . 6 (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑎𝑏)
2423adantl 482 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝑎𝑏)
252frgr2wsp1 28923 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1)
2618, 21, 24, 25syl3anc 1370 . . . 4 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1)
27263impa 1109 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1)
287, 8, 13, 15, 17, 27hash2iun1dif1 15627 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘ 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))
296, 28eqtrd 2776 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  cdif 3894  {csn 4572   ciun 4938  Disj wdisj 5054  cfv 6473  (class class class)co 7329  Fincfn 8796  1c1 10965   · cmul 10969  cmin 11298  cn 12066  2c2 12121  chash 14137  Vtxcvtx 27596   WSPathsN cwwspthsn 28422   WSPathsNOn cwwspthsnon 28423   FriendGraph cfrgr 28851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-ac2 10312  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-disj 5055  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-oadd 8363  df-er 8561  df-map 8680  df-pm 8681  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-sup 9291  df-oi 9359  df-dju 9750  df-card 9788  df-ac 9965  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-n0 12327  df-xnn0 12399  df-z 12413  df-uz 12676  df-rp 12824  df-fz 13333  df-fzo 13476  df-seq 13815  df-exp 13876  df-hash 14138  df-word 14310  df-concat 14366  df-s1 14392  df-s2 14652  df-s3 14653  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-clim 15288  df-sum 15489  df-edg 27648  df-uhgr 27658  df-upgr 27682  df-umgr 27683  df-uspgr 27750  df-usgr 27751  df-wlks 28196  df-wlkson 28197  df-trls 28289  df-trlson 28290  df-pths 28313  df-spths 28314  df-pthson 28315  df-spthson 28316  df-wwlks 28424  df-wwlksn 28425  df-wwlksnon 28426  df-wspthsn 28427  df-wspthsnon 28428  df-frgr 28852
This theorem is referenced by:  frrusgrord0  28933
  Copyright terms: Public domain W3C validator