MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrhash2wsp Structured version   Visualization version   GIF version

Theorem frgrhash2wsp 30311
Description: The number of simple paths of length 2 is n*(n-1) in a friendship graph with n vertices. This corresponds to the proof of claim 3 in [Huneke] p. 2: "... the paths of length two in G: by assumption there are ( n 2 ) such paths.". However, Huneke counts undirected paths, so obtains the result ((𝑛C2) = ((𝑛 · (𝑛 − 1)) / 2)), whereas we count directed paths, obtaining twice that number. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 10-Jan-2022.)
Hypothesis
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrhash2wsp ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))

Proof of Theorem frgrhash2wsp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 12235 . . . . 5 2 ∈ ℕ
2 frgrhash2wsp.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32wspniunwspnon 29903 . . . . 5 ((2 ∈ ℕ ∧ 𝐺 ∈ FriendGraph ) → (2 WSPathsN 𝐺) = 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
41, 3mpan 690 . . . 4 (𝐺 ∈ FriendGraph → (2 WSPathsN 𝐺) = 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
54fveq2d 6844 . . 3 (𝐺 ∈ FriendGraph → (♯‘(2 WSPathsN 𝐺)) = (♯‘ 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)))
65adantr 480 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = (♯‘ 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)))
7 simpr 484 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin)
8 eqid 2729 . . 3 (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝑎})
92eleq1i 2819 . . . . . 6 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
10 wspthnonfi 29902 . . . . . 6 ((Vtx‘𝐺) ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
119, 10sylbi 217 . . . . 5 (𝑉 ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
1211adantl 481 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
13123ad2ant1 1133 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin)
14 2wspiundisj 29943 . . . 4 Disj 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)
1514a1i 11 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → Disj 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
16 2wspdisj 29942 . . . 4 Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)
1716a1i 11 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) → Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))
18 simplll 774 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝐺 ∈ FriendGraph )
19 simpr 484 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) → 𝑎𝑉)
20 eldifi 4090 . . . . . 6 (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏𝑉)
2119, 20anim12i 613 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎𝑉𝑏𝑉))
22 eldifsni 4750 . . . . . . 7 (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏𝑎)
2322necomd 2980 . . . . . 6 (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑎𝑏)
2423adantl 481 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝑎𝑏)
252frgr2wsp1 30309 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1)
2618, 21, 24, 25syl3anc 1373 . . . 4 ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1)
27263impa 1109 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1)
287, 8, 13, 15, 17, 27hash2iun1dif1 15766 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘ 𝑎𝑉 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))
296, 28eqtrd 2764 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908  {csn 4585   ciun 4951  Disj wdisj 5069  cfv 6499  (class class class)co 7369  Fincfn 8895  1c1 11045   · cmul 11049  cmin 11381  cn 12162  2c2 12217  chash 14271  Vtxcvtx 28976   WSPathsN cwwspthsn 29808   WSPathsNOn cwwspthsnon 29809   FriendGraph cfrgr 30237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-dju 9830  df-card 9868  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-wlks 29580  df-wlkson 29581  df-trls 29671  df-trlson 29672  df-pths 29694  df-spths 29695  df-pthson 29696  df-spthson 29697  df-wwlks 29810  df-wwlksn 29811  df-wwlksnon 29812  df-wspthsn 29813  df-wspthsnon 29814  df-frgr 30238
This theorem is referenced by:  frrusgrord0  30319
  Copyright terms: Public domain W3C validator