| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrhash2wsp | Structured version Visualization version GIF version | ||
| Description: The number of simple paths of length 2 is n*(n-1) in a friendship graph with n vertices. This corresponds to the proof of claim 3 in [Huneke] p. 2: "... the paths of length two in G: by assumption there are ( n 2 ) such paths.". However, Huneke counts undirected paths, so obtains the result ((𝑛C2) = ((𝑛 · (𝑛 − 1)) / 2)), whereas we count directed paths, obtaining twice that number. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 10-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrhash2wsp.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| frgrhash2wsp | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12339 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 2 | frgrhash2wsp.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | wspniunwspnon 29943 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ 𝐺 ∈ FriendGraph ) → (2 WSPathsN 𝐺) = ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
| 4 | 1, 3 | mpan 690 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (2 WSPathsN 𝐺) = ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
| 5 | 4 | fveq2d 6910 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (♯‘(2 WSPathsN 𝐺)) = (♯‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = (♯‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))) |
| 7 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin) | |
| 8 | eqid 2737 | . . 3 ⊢ (𝑉 ∖ {𝑎}) = (𝑉 ∖ {𝑎}) | |
| 9 | 2 | eleq1i 2832 | . . . . . 6 ⊢ (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin) |
| 10 | wspthnonfi 29942 | . . . . . 6 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) | |
| 11 | 9, 10 | sylbi 217 | . . . . 5 ⊢ (𝑉 ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
| 13 | 12 | 3ad2ant1 1134 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
| 14 | 2wspiundisj 29983 | . . . 4 ⊢ Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
| 16 | 2wspdisj 29982 | . . . 4 ⊢ Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) → Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
| 18 | simplll 775 | . . . . 5 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝐺 ∈ FriendGraph ) | |
| 19 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 20 | eldifi 4131 | . . . . . 6 ⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏 ∈ 𝑉) | |
| 21 | 19, 20 | anim12i 613 | . . . . 5 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
| 22 | eldifsni 4790 | . . . . . . 7 ⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏 ≠ 𝑎) | |
| 23 | 22 | necomd 2996 | . . . . . 6 ⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑎 ≠ 𝑏) |
| 24 | 23 | adantl 481 | . . . . 5 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝑎 ≠ 𝑏) |
| 25 | 2 | frgr2wsp1 30349 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
| 26 | 18, 21, 24, 25 | syl3anc 1373 | . . . 4 ⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
| 27 | 26 | 3impa 1110 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (♯‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
| 28 | 7, 8, 13, 15, 17, 27 | hash2iun1dif1 15860 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
| 29 | 6, 28 | eqtrd 2777 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · ((♯‘𝑉) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 {csn 4626 ∪ ciun 4991 Disj wdisj 5110 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 1c1 11156 · cmul 11160 − cmin 11492 ℕcn 12266 2c2 12321 ♯chash 14369 Vtxcvtx 29013 WSPathsN cwwspthsn 29848 WSPathsNOn cwwspthsnon 29849 FriendGraph cfrgr 30277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-ac2 10503 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-dju 9941 df-card 9979 df-ac 10156 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-s2 14887 df-s3 14888 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-edg 29065 df-uhgr 29075 df-upgr 29099 df-umgr 29100 df-uspgr 29167 df-usgr 29168 df-wlks 29617 df-wlkson 29618 df-trls 29710 df-trlson 29711 df-pths 29734 df-spths 29735 df-pthson 29736 df-spthson 29737 df-wwlks 29850 df-wwlksn 29851 df-wwlksnon 29852 df-wspthsn 29853 df-wspthsnon 29854 df-frgr 30278 |
| This theorem is referenced by: frrusgrord0 30359 |
| Copyright terms: Public domain | W3C validator |