Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvcod | Structured version Visualization version GIF version |
Description: Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fvcod.g | ⊢ (𝜑 → Fun 𝐺) |
fvcod.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) |
fvcod.h | ⊢ 𝐻 = (𝐹 ∘ 𝐺) |
Ref | Expression |
---|---|
fvcod | ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvcod.h | . . . 4 ⊢ 𝐻 = (𝐹 ∘ 𝐺) | |
2 | 1 | fveq1i 6775 | . . 3 ⊢ (𝐻‘𝐴) = ((𝐹 ∘ 𝐺)‘𝐴) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝐻‘𝐴) = ((𝐹 ∘ 𝐺)‘𝐴)) |
4 | fvcod.g | . . 3 ⊢ (𝜑 → Fun 𝐺) | |
5 | fvcod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) | |
6 | fvco 6866 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
8 | 3, 7 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 dom cdm 5589 ∘ ccom 5593 Fun wfun 6427 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: subsaliuncllem 43896 |
Copyright terms: Public domain | W3C validator |