![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvcod | Structured version Visualization version GIF version |
Description: Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fvcod.g | ⊢ (𝜑 → Fun 𝐺) |
fvcod.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) |
fvcod.h | ⊢ 𝐻 = (𝐹 ∘ 𝐺) |
Ref | Expression |
---|---|
fvcod | ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvcod.h | . . . 4 ⊢ 𝐻 = (𝐹 ∘ 𝐺) | |
2 | 1 | fveq1i 6447 | . . 3 ⊢ (𝐻‘𝐴) = ((𝐹 ∘ 𝐺)‘𝐴) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝐻‘𝐴) = ((𝐹 ∘ 𝐺)‘𝐴)) |
4 | fvcod.g | . . 3 ⊢ (𝜑 → Fun 𝐺) | |
5 | fvcod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) | |
6 | fvco 6534 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
7 | 4, 5, 6 | syl2anc 579 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
8 | 3, 7 | eqtrd 2814 | 1 ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 dom cdm 5355 ∘ ccom 5359 Fun wfun 6129 ‘cfv 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-fv 6143 |
This theorem is referenced by: subsaliuncllem 41499 |
Copyright terms: Public domain | W3C validator |