Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvcod Structured version   Visualization version   GIF version

Theorem fvcod 44385
Description: Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fvcod.g (𝜑 → Fun 𝐺)
fvcod.a (𝜑𝐴 ∈ dom 𝐺)
fvcod.h 𝐻 = (𝐹𝐺)
Assertion
Ref Expression
fvcod (𝜑 → (𝐻𝐴) = (𝐹‘(𝐺𝐴)))

Proof of Theorem fvcod
StepHypRef Expression
1 fvcod.h . . . 4 𝐻 = (𝐹𝐺)
21fveq1i 6892 . . 3 (𝐻𝐴) = ((𝐹𝐺)‘𝐴)
32a1i 11 . 2 (𝜑 → (𝐻𝐴) = ((𝐹𝐺)‘𝐴))
4 fvcod.g . . 3 (𝜑 → Fun 𝐺)
5 fvcod.a . . 3 (𝜑𝐴 ∈ dom 𝐺)
6 fvco 6989 . . 3 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
74, 5, 6syl2anc 583 . 2 (𝜑 → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
83, 7eqtrd 2771 1 (𝜑 → (𝐻𝐴) = (𝐹‘(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  dom cdm 5676  ccom 5680  Fun wfun 6537  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  subsaliuncllem  45532
  Copyright terms: Public domain W3C validator