Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvcod Structured version   Visualization version   GIF version

Theorem fvcod 42655
Description: Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fvcod.g (𝜑 → Fun 𝐺)
fvcod.a (𝜑𝐴 ∈ dom 𝐺)
fvcod.h 𝐻 = (𝐹𝐺)
Assertion
Ref Expression
fvcod (𝜑 → (𝐻𝐴) = (𝐹‘(𝐺𝐴)))

Proof of Theorem fvcod
StepHypRef Expression
1 fvcod.h . . . 4 𝐻 = (𝐹𝐺)
21fveq1i 6757 . . 3 (𝐻𝐴) = ((𝐹𝐺)‘𝐴)
32a1i 11 . 2 (𝜑 → (𝐻𝐴) = ((𝐹𝐺)‘𝐴))
4 fvcod.g . . 3 (𝜑 → Fun 𝐺)
5 fvcod.a . . 3 (𝜑𝐴 ∈ dom 𝐺)
6 fvco 6848 . . 3 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
74, 5, 6syl2anc 583 . 2 (𝜑 → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
83, 7eqtrd 2778 1 (𝜑 → (𝐻𝐴) = (𝐹‘(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  dom cdm 5580  ccom 5584  Fun wfun 6412  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  subsaliuncllem  43786
  Copyright terms: Public domain W3C validator