Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvcod | Structured version Visualization version GIF version |
Description: Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fvcod.g | ⊢ (𝜑 → Fun 𝐺) |
fvcod.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) |
fvcod.h | ⊢ 𝐻 = (𝐹 ∘ 𝐺) |
Ref | Expression |
---|---|
fvcod | ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvcod.h | . . . 4 ⊢ 𝐻 = (𝐹 ∘ 𝐺) | |
2 | 1 | fveq1i 6757 | . . 3 ⊢ (𝐻‘𝐴) = ((𝐹 ∘ 𝐺)‘𝐴) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝐻‘𝐴) = ((𝐹 ∘ 𝐺)‘𝐴)) |
4 | fvcod.g | . . 3 ⊢ (𝜑 → Fun 𝐺) | |
5 | fvcod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) | |
6 | fvco 6848 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
7 | 4, 5, 6 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
8 | 3, 7 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 dom cdm 5580 ∘ ccom 5584 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: subsaliuncllem 43786 |
Copyright terms: Public domain | W3C validator |