Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvcod Structured version   Visualization version   GIF version

Theorem fvcod 45348
Description: Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fvcod.g (𝜑 → Fun 𝐺)
fvcod.a (𝜑𝐴 ∈ dom 𝐺)
fvcod.h 𝐻 = (𝐹𝐺)
Assertion
Ref Expression
fvcod (𝜑 → (𝐻𝐴) = (𝐹‘(𝐺𝐴)))

Proof of Theorem fvcod
StepHypRef Expression
1 fvcod.h . . . 4 𝐻 = (𝐹𝐺)
21fveq1i 6829 . . 3 (𝐻𝐴) = ((𝐹𝐺)‘𝐴)
32a1i 11 . 2 (𝜑 → (𝐻𝐴) = ((𝐹𝐺)‘𝐴))
4 fvcod.g . . 3 (𝜑 → Fun 𝐺)
5 fvcod.a . . 3 (𝜑𝐴 ∈ dom 𝐺)
6 fvco 6926 . . 3 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
74, 5, 6syl2anc 584 . 2 (𝜑 → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
83, 7eqtrd 2768 1 (𝜑 → (𝐻𝐴) = (𝐹‘(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  dom cdm 5619  ccom 5623  Fun wfun 6480  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  subsaliuncllem  46479
  Copyright terms: Public domain W3C validator