Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsaliuncllem Structured version   Visualization version   GIF version

Theorem subsaliuncllem 46278
Description: A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsaliuncllem.f 𝑦𝜑
subsaliuncllem.s (𝜑𝑆𝑉)
subsaliuncllem.g 𝐺 = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
subsaliuncllem.e 𝐸 = (𝐻𝐺)
subsaliuncllem.h (𝜑𝐻 Fn ran 𝐺)
subsaliuncllem.y (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑦)
Assertion
Ref Expression
subsaliuncllem (𝜑 → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
Distinct variable groups:   𝐷,𝑒   𝑥,𝐷   𝑒,𝐸,𝑛   𝑥,𝐸,𝑛   𝑒,𝐹   𝑥,𝐹   𝑦,𝐺   𝑦,𝐻   𝑆,𝑒,𝑛   𝑥,𝑆   𝑦,𝑆,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑒)   𝐷(𝑦,𝑛)   𝐸(𝑦)   𝐹(𝑦,𝑛)   𝐺(𝑥,𝑒,𝑛)   𝐻(𝑥,𝑒,𝑛)   𝑉(𝑥,𝑦,𝑒,𝑛)

Proof of Theorem subsaliuncllem
StepHypRef Expression
1 subsaliuncllem.e . . 3 𝐸 = (𝐻𝐺)
2 subsaliuncllem.h . . . . . . 7 (𝜑𝐻 Fn ran 𝐺)
3 subsaliuncllem.f . . . . . . . 8 𝑦𝜑
4 vex 3492 . . . . . . . . . . . . . 14 𝑦 ∈ V
5 subsaliuncllem.g . . . . . . . . . . . . . . 15 𝐺 = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
65elrnmpt 5981 . . . . . . . . . . . . . 14 (𝑦 ∈ V → (𝑦 ∈ ran 𝐺 ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
74, 6ax-mp 5 . . . . . . . . . . . . 13 (𝑦 ∈ ran 𝐺 ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
87biimpi 216 . . . . . . . . . . . 12 (𝑦 ∈ ran 𝐺 → ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
9 id 22 . . . . . . . . . . . . . . . 16 (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
10 ssrab2 4103 . . . . . . . . . . . . . . . . 17 {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ⊆ 𝑆
1110a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ⊆ 𝑆)
129, 11eqsstrd 4047 . . . . . . . . . . . . . . 15 (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦𝑆)
1312a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦𝑆))
1413rexlimiv 3154 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦𝑆)
1514a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ran 𝐺 → (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦𝑆))
168, 15mpd 15 . . . . . . . . . . 11 (𝑦 ∈ ran 𝐺𝑦𝑆)
1716adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐺) → 𝑦𝑆)
18 subsaliuncllem.y . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑦)
1918r19.21bi 3257 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐺) → (𝐻𝑦) ∈ 𝑦)
2017, 19sseldd 4009 . . . . . . . . 9 ((𝜑𝑦 ∈ ran 𝐺) → (𝐻𝑦) ∈ 𝑆)
2120ex 412 . . . . . . . 8 (𝜑 → (𝑦 ∈ ran 𝐺 → (𝐻𝑦) ∈ 𝑆))
223, 21ralrimi 3263 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑆)
232, 22jca 511 . . . . . 6 (𝜑 → (𝐻 Fn ran 𝐺 ∧ ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑆))
24 ffnfv 7153 . . . . . 6 (𝐻:ran 𝐺𝑆 ↔ (𝐻 Fn ran 𝐺 ∧ ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑆))
2523, 24sylibr 234 . . . . 5 (𝜑𝐻:ran 𝐺𝑆)
26 eqid 2740 . . . . . . . . 9 {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}
27 subsaliuncllem.s . . . . . . . . 9 (𝜑𝑆𝑉)
2826, 27rabexd 5358 . . . . . . . 8 (𝜑 → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
2928ralrimivw 3156 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
305fnmpt 6720 . . . . . . 7 (∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V → 𝐺 Fn ℕ)
3129, 30syl 17 . . . . . 6 (𝜑𝐺 Fn ℕ)
32 dffn3 6759 . . . . . 6 (𝐺 Fn ℕ ↔ 𝐺:ℕ⟶ran 𝐺)
3331, 32sylib 218 . . . . 5 (𝜑𝐺:ℕ⟶ran 𝐺)
34 fco 6771 . . . . 5 ((𝐻:ran 𝐺𝑆𝐺:ℕ⟶ran 𝐺) → (𝐻𝐺):ℕ⟶𝑆)
3525, 33, 34syl2anc 583 . . . 4 (𝜑 → (𝐻𝐺):ℕ⟶𝑆)
36 nnex 12299 . . . . . 6 ℕ ∈ V
3736a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
3827, 37elmapd 8898 . . . 4 (𝜑 → ((𝐻𝐺) ∈ (𝑆m ℕ) ↔ (𝐻𝐺):ℕ⟶𝑆))
3935, 38mpbird 257 . . 3 (𝜑 → (𝐻𝐺) ∈ (𝑆m ℕ))
401, 39eqeltrid 2848 . 2 (𝜑𝐸 ∈ (𝑆m ℕ))
4133ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ran 𝐺)
4218adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑦)
43 fveq2 6920 . . . . . . . . 9 (𝑦 = (𝐺𝑛) → (𝐻𝑦) = (𝐻‘(𝐺𝑛)))
44 id 22 . . . . . . . . 9 (𝑦 = (𝐺𝑛) → 𝑦 = (𝐺𝑛))
4543, 44eleq12d 2838 . . . . . . . 8 (𝑦 = (𝐺𝑛) → ((𝐻𝑦) ∈ 𝑦 ↔ (𝐻‘(𝐺𝑛)) ∈ (𝐺𝑛)))
4645rspcva 3633 . . . . . . 7 (((𝐺𝑛) ∈ ran 𝐺 ∧ ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑦) → (𝐻‘(𝐺𝑛)) ∈ (𝐺𝑛))
4741, 42, 46syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐻‘(𝐺𝑛)) ∈ (𝐺𝑛))
4833ffund 6751 . . . . . . . . 9 (𝜑 → Fun 𝐺)
4948adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → Fun 𝐺)
50 simpr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
515dmeqi 5929 . . . . . . . . . . . . 13 dom 𝐺 = dom (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
5251a1i 11 . . . . . . . . . . . 12 (𝜑 → dom 𝐺 = dom (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
53 dmmptg 6273 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V → dom (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = ℕ)
5429, 53syl 17 . . . . . . . . . . . 12 (𝜑 → dom (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = ℕ)
5552, 54eqtrd 2780 . . . . . . . . . . 11 (𝜑 → dom 𝐺 = ℕ)
5655eqcomd 2746 . . . . . . . . . 10 (𝜑 → ℕ = dom 𝐺)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ℕ = dom 𝐺)
5850, 57eleqtrd 2846 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ dom 𝐺)
5949, 58, 1fvcod 45134 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (𝐻‘(𝐺𝑛)))
605a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
6128adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
6260, 61fvmpt2d 7042 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
6362eqcomd 2746 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = (𝐺𝑛))
6459, 63eleq12d 2838 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) ∈ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ↔ (𝐻‘(𝐺𝑛)) ∈ (𝐺𝑛)))
6547, 64mpbird 257 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
66 ineq1 4234 . . . . . . 7 (𝑥 = (𝐸𝑛) → (𝑥𝐷) = ((𝐸𝑛) ∩ 𝐷))
6766eqeq2d 2751 . . . . . 6 (𝑥 = (𝐸𝑛) → ((𝐹𝑛) = (𝑥𝐷) ↔ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)))
6867elrab 3708 . . . . 5 ((𝐸𝑛) ∈ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ↔ ((𝐸𝑛) ∈ 𝑆 ∧ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)))
6965, 68sylib 218 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) ∈ 𝑆 ∧ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)))
7069simprd 495 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷))
7170ralrimiva 3152 . 2 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷))
72 fveq1 6919 . . . . . 6 (𝑒 = 𝐸 → (𝑒𝑛) = (𝐸𝑛))
7372ineq1d 4240 . . . . 5 (𝑒 = 𝐸 → ((𝑒𝑛) ∩ 𝐷) = ((𝐸𝑛) ∩ 𝐷))
7473eqeq2d 2751 . . . 4 (𝑒 = 𝐸 → ((𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) ↔ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)))
7574ralbidv 3184 . . 3 (𝑒 = 𝐸 → (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)))
7675rspcev 3635 . 2 ((𝐸 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7740, 71, 76syl2anc 583 1 (𝜑 → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976  cmpt 5249  dom cdm 5700  ran crn 5701  ccom 5704  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cn 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-nn 12294
This theorem is referenced by:  subsaliuncl  46279
  Copyright terms: Public domain W3C validator