Proof of Theorem subsaliuncllem
Step | Hyp | Ref
| Expression |
1 | | subsaliuncllem.e |
. . 3
⊢ 𝐸 = (𝐻 ∘ 𝐺) |
2 | | subsaliuncllem.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 Fn ran 𝐺) |
3 | | subsaliuncllem.f |
. . . . . . . 8
⊢
Ⅎ𝑦𝜑 |
4 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
5 | | subsaliuncllem.g |
. . . . . . . . . . . . . . 15
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
6 | 5 | elrnmpt 5865 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ V → (𝑦 ∈ ran 𝐺 ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})) |
7 | 4, 6 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ran 𝐺 ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
8 | 7 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ran 𝐺 → ∃𝑛 ∈ ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
9 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} → 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
10 | | ssrab2 4013 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ⊆ 𝑆 |
11 | 10 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} → {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ⊆ 𝑆) |
12 | 9, 11 | eqsstrd 3959 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} → 𝑦 ⊆ 𝑆) |
13 | 12 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} → 𝑦 ⊆ 𝑆)) |
14 | 13 | rexlimiv 3209 |
. . . . . . . . . . . . 13
⊢
(∃𝑛 ∈
ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} → 𝑦 ⊆ 𝑆) |
15 | 14 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ran 𝐺 → (∃𝑛 ∈ ℕ 𝑦 = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} → 𝑦 ⊆ 𝑆)) |
16 | 8, 15 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ran 𝐺 → 𝑦 ⊆ 𝑆) |
17 | 16 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → 𝑦 ⊆ 𝑆) |
18 | | subsaliuncllem.y |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻‘𝑦) ∈ 𝑦) |
19 | 18 | r19.21bi 3134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → (𝐻‘𝑦) ∈ 𝑦) |
20 | 17, 19 | sseldd 3922 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐺) → (𝐻‘𝑦) ∈ 𝑆) |
21 | 20 | ex 413 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ ran 𝐺 → (𝐻‘𝑦) ∈ 𝑆)) |
22 | 3, 21 | ralrimi 3141 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻‘𝑦) ∈ 𝑆) |
23 | 2, 22 | jca 512 |
. . . . . 6
⊢ (𝜑 → (𝐻 Fn ran 𝐺 ∧ ∀𝑦 ∈ ran 𝐺(𝐻‘𝑦) ∈ 𝑆)) |
24 | | ffnfv 6992 |
. . . . . 6
⊢ (𝐻:ran 𝐺⟶𝑆 ↔ (𝐻 Fn ran 𝐺 ∧ ∀𝑦 ∈ ran 𝐺(𝐻‘𝑦) ∈ 𝑆)) |
25 | 23, 24 | sylibr 233 |
. . . . 5
⊢ (𝜑 → 𝐻:ran 𝐺⟶𝑆) |
26 | | eqid 2738 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} |
27 | | subsaliuncllem.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
28 | 26, 27 | rabexd 5257 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ∈ V) |
29 | 28 | ralrimivw 3104 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ ℕ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ∈ V) |
30 | 5 | fnmpt 6573 |
. . . . . . 7
⊢
(∀𝑛 ∈
ℕ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ∈ V → 𝐺 Fn ℕ) |
31 | 29, 30 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 Fn ℕ) |
32 | | dffn3 6613 |
. . . . . 6
⊢ (𝐺 Fn ℕ ↔ 𝐺:ℕ⟶ran 𝐺) |
33 | 31, 32 | sylib 217 |
. . . . 5
⊢ (𝜑 → 𝐺:ℕ⟶ran 𝐺) |
34 | | fco 6624 |
. . . . 5
⊢ ((𝐻:ran 𝐺⟶𝑆 ∧ 𝐺:ℕ⟶ran 𝐺) → (𝐻 ∘ 𝐺):ℕ⟶𝑆) |
35 | 25, 33, 34 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ 𝐺):ℕ⟶𝑆) |
36 | | nnex 11979 |
. . . . . 6
⊢ ℕ
∈ V |
37 | 36 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ ∈
V) |
38 | 27, 37 | elmapd 8629 |
. . . 4
⊢ (𝜑 → ((𝐻 ∘ 𝐺) ∈ (𝑆 ↑m ℕ) ↔ (𝐻 ∘ 𝐺):ℕ⟶𝑆)) |
39 | 35, 38 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝐻 ∘ 𝐺) ∈ (𝑆 ↑m
ℕ)) |
40 | 1, 39 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝐸 ∈ (𝑆 ↑m
ℕ)) |
41 | 33 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ran 𝐺) |
42 | 18 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑦 ∈ ran 𝐺(𝐻‘𝑦) ∈ 𝑦) |
43 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑛) → (𝐻‘𝑦) = (𝐻‘(𝐺‘𝑛))) |
44 | | id 22 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑛) → 𝑦 = (𝐺‘𝑛)) |
45 | 43, 44 | eleq12d 2833 |
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑛) → ((𝐻‘𝑦) ∈ 𝑦 ↔ (𝐻‘(𝐺‘𝑛)) ∈ (𝐺‘𝑛))) |
46 | 45 | rspcva 3559 |
. . . . . . 7
⊢ (((𝐺‘𝑛) ∈ ran 𝐺 ∧ ∀𝑦 ∈ ran 𝐺(𝐻‘𝑦) ∈ 𝑦) → (𝐻‘(𝐺‘𝑛)) ∈ (𝐺‘𝑛)) |
47 | 41, 42, 46 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐻‘(𝐺‘𝑛)) ∈ (𝐺‘𝑛)) |
48 | 33 | ffund 6604 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐺) |
49 | 48 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Fun 𝐺) |
50 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
51 | 5 | dmeqi 5813 |
. . . . . . . . . . . . 13
⊢ dom 𝐺 = dom (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
52 | 51 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐺 = dom (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})) |
53 | | dmmptg 6145 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
ℕ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ∈ V → dom (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) = ℕ) |
54 | 29, 53 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) = ℕ) |
55 | 52, 54 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐺 = ℕ) |
56 | 55 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → ℕ = dom 𝐺) |
57 | 56 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℕ = dom 𝐺) |
58 | 50, 57 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ dom 𝐺) |
59 | 49, 58, 1 | fvcod 42766 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) = (𝐻‘(𝐺‘𝑛))) |
60 | 5 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 = (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)})) |
61 | 28 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ∈ V) |
62 | 60, 61 | fvmpt2d 6888 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
63 | 62 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} = (𝐺‘𝑛)) |
64 | 59, 63 | eleq12d 2833 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑛) ∈ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ↔ (𝐻‘(𝐺‘𝑛)) ∈ (𝐺‘𝑛))) |
65 | 47, 64 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑛) ∈ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) |
66 | | ineq1 4139 |
. . . . . . 7
⊢ (𝑥 = (𝐸‘𝑛) → (𝑥 ∩ 𝐷) = ((𝐸‘𝑛) ∩ 𝐷)) |
67 | 66 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑥 = (𝐸‘𝑛) → ((𝐹‘𝑛) = (𝑥 ∩ 𝐷) ↔ (𝐹‘𝑛) = ((𝐸‘𝑛) ∩ 𝐷))) |
68 | 67 | elrab 3624 |
. . . . 5
⊢ ((𝐸‘𝑛) ∈ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)} ↔ ((𝐸‘𝑛) ∈ 𝑆 ∧ (𝐹‘𝑛) = ((𝐸‘𝑛) ∩ 𝐷))) |
69 | 65, 68 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑛) ∈ 𝑆 ∧ (𝐹‘𝑛) = ((𝐸‘𝑛) ∩ 𝐷))) |
70 | 69 | simprd 496 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∩ 𝐷)) |
71 | 70 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝐸‘𝑛) ∩ 𝐷)) |
72 | | fveq1 6773 |
. . . . . 6
⊢ (𝑒 = 𝐸 → (𝑒‘𝑛) = (𝐸‘𝑛)) |
73 | 72 | ineq1d 4145 |
. . . . 5
⊢ (𝑒 = 𝐸 → ((𝑒‘𝑛) ∩ 𝐷) = ((𝐸‘𝑛) ∩ 𝐷)) |
74 | 73 | eqeq2d 2749 |
. . . 4
⊢ (𝑒 = 𝐸 → ((𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷) ↔ (𝐹‘𝑛) = ((𝐸‘𝑛) ∩ 𝐷))) |
75 | 74 | ralbidv 3112 |
. . 3
⊢ (𝑒 = 𝐸 → (∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷) ↔ ∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝐸‘𝑛) ∩ 𝐷))) |
76 | 75 | rspcev 3561 |
. 2
⊢ ((𝐸 ∈ (𝑆 ↑m ℕ) ∧
∀𝑛 ∈ ℕ
(𝐹‘𝑛) = ((𝐸‘𝑛) ∩ 𝐷)) → ∃𝑒 ∈ (𝑆 ↑m ℕ)∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) |
77 | 40, 71, 76 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑒 ∈ (𝑆 ↑m ℕ)∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) |