MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco Structured version   Visualization version   GIF version

Theorem fvco 6962
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
fvco ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))

Proof of Theorem fvco
StepHypRef Expression
1 funfn 6549 . 2 (Fun 𝐺𝐺 Fn dom 𝐺)
2 fvco2 6961 . 2 ((𝐺 Fn dom 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
31, 2sylanb 581 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  dom cdm 5641  ccom 5645  Fun wfun 6508   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  fin23lem30  10302  hashkf  14304  hashgval  14305  gsumpropd2lem  18613  ofco2  22345  opfv  32575  xppreima  32576  psgnfzto1stlem  33064  cycpmfv1  33077  cycpmfv2  33078  cyc3co2  33104  smatlem  33794  mdetpmtr1  33820  madjusmdetlem2  33825  madjusmdetlem4  33827  eulerpartlemgvv  34374  eulerpartlemgu  34375  sseqfv2  34392  reprpmtf1o  34624  hgt750lemg  34652  aks5lem2  42182  comptiunov2i  43702  choicefi  45201  fvcod  45228  evthiccabs  45501  cncficcgt0  45893  dvsinax  45918  fvvolioof  45994  fvvolicof  45996  stirlinglem14  46092  fourierdlem42  46154  hoicvr  46553  hoi2toco  46612  ovolval3  46652  ovolval4lem1  46654  ovnovollem1  46661  ovnovollem2  46662
  Copyright terms: Public domain W3C validator