MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco Structured version   Visualization version   GIF version

Theorem fvco 6959
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
fvco ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))

Proof of Theorem fvco
StepHypRef Expression
1 funfn 6546 . 2 (Fun 𝐺𝐺 Fn dom 𝐺)
2 fvco2 6958 . 2 ((𝐺 Fn dom 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
31, 2sylanb 581 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  dom cdm 5638  ccom 5642  Fun wfun 6505   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  fin23lem30  10295  hashkf  14297  hashgval  14298  gsumpropd2lem  18606  ofco2  22338  opfv  32568  xppreima  32569  psgnfzto1stlem  33057  cycpmfv1  33070  cycpmfv2  33071  cyc3co2  33097  smatlem  33787  mdetpmtr1  33813  madjusmdetlem2  33818  madjusmdetlem4  33820  eulerpartlemgvv  34367  eulerpartlemgu  34368  sseqfv2  34385  reprpmtf1o  34617  hgt750lemg  34645  aks5lem2  42175  comptiunov2i  43695  choicefi  45194  fvcod  45221  evthiccabs  45494  cncficcgt0  45886  dvsinax  45911  fvvolioof  45987  fvvolicof  45989  stirlinglem14  46085  fourierdlem42  46147  hoicvr  46546  hoi2toco  46605  ovolval3  46645  ovolval4lem1  46647  ovnovollem1  46654  ovnovollem2  46655
  Copyright terms: Public domain W3C validator