| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| fvco | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6546 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
| 2 | fvco2 6958 | . 2 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
| 3 | 1, 2 | sylanb 581 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 dom cdm 5638 ∘ ccom 5642 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: fin23lem30 10295 hashkf 14297 hashgval 14298 gsumpropd2lem 18606 ofco2 22338 opfv 32568 xppreima 32569 psgnfzto1stlem 33057 cycpmfv1 33070 cycpmfv2 33071 cyc3co2 33097 smatlem 33787 mdetpmtr1 33813 madjusmdetlem2 33818 madjusmdetlem4 33820 eulerpartlemgvv 34367 eulerpartlemgu 34368 sseqfv2 34385 reprpmtf1o 34617 hgt750lemg 34645 aks5lem2 42175 comptiunov2i 43695 choicefi 45194 fvcod 45221 evthiccabs 45494 cncficcgt0 45886 dvsinax 45911 fvvolioof 45987 fvvolicof 45989 stirlinglem14 46085 fourierdlem42 46147 hoicvr 46546 hoi2toco 46605 ovolval3 46645 ovolval4lem1 46647 ovnovollem1 46654 ovnovollem2 46655 |
| Copyright terms: Public domain | W3C validator |