| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| fvco | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6530 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
| 2 | fvco2 6940 | . 2 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
| 3 | 1, 2 | sylanb 581 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 dom cdm 5631 ∘ ccom 5635 Fun wfun 6493 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: fin23lem30 10271 hashkf 14273 hashgval 14274 gsumpropd2lem 18582 ofco2 22314 opfv 32541 xppreima 32542 psgnfzto1stlem 33030 cycpmfv1 33043 cycpmfv2 33044 cyc3co2 33070 smatlem 33760 mdetpmtr1 33786 madjusmdetlem2 33791 madjusmdetlem4 33793 eulerpartlemgvv 34340 eulerpartlemgu 34341 sseqfv2 34358 reprpmtf1o 34590 hgt750lemg 34618 aks5lem2 42148 comptiunov2i 43668 choicefi 45167 fvcod 45194 evthiccabs 45467 cncficcgt0 45859 dvsinax 45884 fvvolioof 45960 fvvolicof 45962 stirlinglem14 46058 fourierdlem42 46120 hoicvr 46519 hoi2toco 46578 ovolval3 46618 ovolval4lem1 46620 ovnovollem1 46627 ovnovollem2 46628 |
| Copyright terms: Public domain | W3C validator |