![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvco | Structured version Visualization version GIF version |
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
fvco | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6152 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
2 | fvco2 6519 | . 2 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
3 | 1, 2 | sylanb 578 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 dom cdm 5341 ∘ ccom 5345 Fun wfun 6116 Fn wfn 6117 ‘cfv 6122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-fv 6130 |
This theorem is referenced by: fin23lem30 9478 hashkf 13411 hashgval 13412 gsumpropd2lem 17625 ofco2 20624 opfv 29996 xppreima 29997 psgnfzto1stlem 30394 smatlem 30407 mdetpmtr1 30433 madjusmdetlem2 30438 madjusmdetlem4 30440 eulerpartlemgvv 30982 eulerpartlemgu 30983 sseqfv2 31001 reprpmtf1o 31252 hgt750lemg 31280 comptiunov2i 38838 choicefi 40197 fvcod 40226 evthiccabs 40516 cncficcgt0 40895 dvsinax 40921 fvvolioof 40999 fvvolicof 41001 stirlinglem14 41097 fourierdlem42 41159 hoicvr 41555 hoi2toco 41614 ovolval3 41654 ovolval4lem1 41656 ovnovollem1 41663 ovnovollem2 41664 |
Copyright terms: Public domain | W3C validator |