Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvco | Structured version Visualization version GIF version |
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
fvco | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6464 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
2 | fvco2 6865 | . 2 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
3 | 1, 2 | sylanb 581 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 dom cdm 5589 ∘ ccom 5593 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: fin23lem30 10098 hashkf 14046 hashgval 14047 gsumpropd2lem 18363 ofco2 21600 opfv 30982 xppreima 30983 psgnfzto1stlem 31367 cycpmfv1 31380 cycpmfv2 31381 cyc3co2 31407 smatlem 31747 mdetpmtr1 31773 madjusmdetlem2 31778 madjusmdetlem4 31780 eulerpartlemgvv 32343 eulerpartlemgu 32344 sseqfv2 32361 reprpmtf1o 32606 hgt750lemg 32634 comptiunov2i 41314 choicefi 42740 fvcod 42766 evthiccabs 43034 cncficcgt0 43429 dvsinax 43454 fvvolioof 43530 fvvolicof 43532 stirlinglem14 43628 fourierdlem42 43690 hoicvr 44086 hoi2toco 44145 ovolval3 44185 ovolval4lem1 44187 ovnovollem1 44194 ovnovollem2 44195 |
Copyright terms: Public domain | W3C validator |