Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvco | Structured version Visualization version GIF version |
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
fvco | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6448 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
2 | fvco2 6847 | . 2 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
3 | 1, 2 | sylanb 580 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 dom cdm 5580 ∘ ccom 5584 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: fin23lem30 10029 hashkf 13974 hashgval 13975 gsumpropd2lem 18278 ofco2 21508 opfv 30883 xppreima 30884 psgnfzto1stlem 31269 cycpmfv1 31282 cycpmfv2 31283 cyc3co2 31309 smatlem 31649 mdetpmtr1 31675 madjusmdetlem2 31680 madjusmdetlem4 31682 eulerpartlemgvv 32243 eulerpartlemgu 32244 sseqfv2 32261 reprpmtf1o 32506 hgt750lemg 32534 comptiunov2i 41203 choicefi 42629 fvcod 42655 evthiccabs 42924 cncficcgt0 43319 dvsinax 43344 fvvolioof 43420 fvvolicof 43422 stirlinglem14 43518 fourierdlem42 43580 hoicvr 43976 hoi2toco 44035 ovolval3 44075 ovolval4lem1 44077 ovnovollem1 44084 ovnovollem2 44085 |
Copyright terms: Public domain | W3C validator |