MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco Structured version   Visualization version   GIF version

Theorem fvco 7020
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
fvco ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))

Proof of Theorem fvco
StepHypRef Expression
1 funfn 6608 . 2 (Fun 𝐺𝐺 Fn dom 𝐺)
2 fvco2 7019 . 2 ((𝐺 Fn dom 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
31, 2sylanb 580 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  dom cdm 5700  ccom 5704  Fun wfun 6567   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  fin23lem30  10411  hashkf  14381  hashgval  14382  gsumpropd2lem  18717  ofco2  22478  opfv  32663  xppreima  32664  psgnfzto1stlem  33093  cycpmfv1  33106  cycpmfv2  33107  cyc3co2  33133  smatlem  33743  mdetpmtr1  33769  madjusmdetlem2  33774  madjusmdetlem4  33776  eulerpartlemgvv  34341  eulerpartlemgu  34342  sseqfv2  34359  reprpmtf1o  34603  hgt750lemg  34631  aks5lem2  42144  comptiunov2i  43668  choicefi  45107  fvcod  45134  evthiccabs  45414  cncficcgt0  45809  dvsinax  45834  fvvolioof  45910  fvvolicof  45912  stirlinglem14  46008  fourierdlem42  46070  hoicvr  46469  hoi2toco  46528  ovolval3  46568  ovolval4lem1  46570  ovnovollem1  46577  ovnovollem2  46578
  Copyright terms: Public domain W3C validator