MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco Structured version   Visualization version   GIF version

Theorem fvco 6920
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
fvco ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))

Proof of Theorem fvco
StepHypRef Expression
1 funfn 6511 . 2 (Fun 𝐺𝐺 Fn dom 𝐺)
2 fvco2 6919 . 2 ((𝐺 Fn dom 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
31, 2sylanb 581 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  dom cdm 5614  ccom 5618  Fun wfun 6475   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  fin23lem30  10233  hashkf  14239  hashgval  14240  gsumpropd2lem  18587  ofco2  22366  opfv  32626  xppreima  32627  psgnfzto1stlem  33069  cycpmfv1  33082  cycpmfv2  33083  cyc3co2  33109  smatlem  33810  mdetpmtr1  33836  madjusmdetlem2  33841  madjusmdetlem4  33843  eulerpartlemgvv  34389  eulerpartlemgu  34390  sseqfv2  34407  reprpmtf1o  34639  hgt750lemg  34667  aks5lem2  42228  comptiunov2i  43747  choicefi  45245  fvcod  45272  evthiccabs  45544  cncficcgt0  45934  dvsinax  45959  fvvolioof  46035  fvvolicof  46037  stirlinglem14  46133  fourierdlem42  46195  hoicvr  46594  hoi2toco  46653  ovolval3  46693  ovolval4lem1  46695  ovnovollem1  46702  ovnovollem2  46703
  Copyright terms: Public domain W3C validator