MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco Structured version   Visualization version   GIF version

Theorem fvco 6520
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
fvco ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))

Proof of Theorem fvco
StepHypRef Expression
1 funfn 6152 . 2 (Fun 𝐺𝐺 Fn dom 𝐺)
2 fvco2 6519 . 2 ((𝐺 Fn dom 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
31, 2sylanb 578 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  dom cdm 5341  ccom 5345  Fun wfun 6116   Fn wfn 6117  cfv 6122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-sbc 3662  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-br 4873  df-opab 4935  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-fv 6130
This theorem is referenced by:  fin23lem30  9478  hashkf  13411  hashgval  13412  gsumpropd2lem  17625  ofco2  20624  opfv  29996  xppreima  29997  psgnfzto1stlem  30394  smatlem  30407  mdetpmtr1  30433  madjusmdetlem2  30438  madjusmdetlem4  30440  eulerpartlemgvv  30982  eulerpartlemgu  30983  sseqfv2  31001  reprpmtf1o  31252  hgt750lemg  31280  comptiunov2i  38838  choicefi  40197  fvcod  40226  evthiccabs  40516  cncficcgt0  40895  dvsinax  40921  fvvolioof  40999  fvvolicof  41001  stirlinglem14  41097  fourierdlem42  41159  hoicvr  41555  hoi2toco  41614  ovolval3  41654  ovolval4lem1  41656  ovnovollem1  41663  ovnovollem2  41664
  Copyright terms: Public domain W3C validator