MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco Structured version   Visualization version   GIF version

Theorem fvco 6982
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
fvco ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))

Proof of Theorem fvco
StepHypRef Expression
1 funfn 6571 . 2 (Fun 𝐺𝐺 Fn dom 𝐺)
2 fvco2 6981 . 2 ((𝐺 Fn dom 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
31, 2sylanb 581 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  dom cdm 5659  ccom 5663  Fun wfun 6530   Fn wfn 6531  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544
This theorem is referenced by:  fin23lem30  10361  hashkf  14355  hashgval  14356  gsumpropd2lem  18662  ofco2  22394  opfv  32627  xppreima  32628  psgnfzto1stlem  33116  cycpmfv1  33129  cycpmfv2  33130  cyc3co2  33156  smatlem  33833  mdetpmtr1  33859  madjusmdetlem2  33864  madjusmdetlem4  33866  eulerpartlemgvv  34413  eulerpartlemgu  34414  sseqfv2  34431  reprpmtf1o  34663  hgt750lemg  34691  aks5lem2  42205  comptiunov2i  43697  choicefi  45191  fvcod  45218  evthiccabs  45492  cncficcgt0  45884  dvsinax  45909  fvvolioof  45985  fvvolicof  45987  stirlinglem14  46083  fourierdlem42  46145  hoicvr  46544  hoi2toco  46603  ovolval3  46643  ovolval4lem1  46645  ovnovollem1  46652  ovnovollem2  46653
  Copyright terms: Public domain W3C validator