Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvco | Structured version Visualization version GIF version |
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
fvco | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6515 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
2 | fvco2 6922 | . 2 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
3 | 1, 2 | sylanb 581 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 dom cdm 5621 ∘ ccom 5625 Fun wfun 6474 Fn wfn 6475 ‘cfv 6480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-fv 6488 |
This theorem is referenced by: fin23lem30 10200 hashkf 14148 hashgval 14149 gsumpropd2lem 18461 ofco2 21707 opfv 31269 xppreima 31270 psgnfzto1stlem 31654 cycpmfv1 31667 cycpmfv2 31668 cyc3co2 31694 smatlem 32045 mdetpmtr1 32071 madjusmdetlem2 32076 madjusmdetlem4 32078 eulerpartlemgvv 32643 eulerpartlemgu 32644 sseqfv2 32661 reprpmtf1o 32906 hgt750lemg 32934 comptiunov2i 41687 choicefi 43119 fvcod 43146 evthiccabs 43422 cncficcgt0 43817 dvsinax 43842 fvvolioof 43918 fvvolicof 43920 stirlinglem14 44016 fourierdlem42 44078 hoicvr 44475 hoi2toco 44534 ovolval3 44574 ovolval4lem1 44576 ovnovollem1 44583 ovnovollem2 44584 |
Copyright terms: Public domain | W3C validator |