| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco | Structured version Visualization version GIF version | ||
| Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| fvco | ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6571 | . 2 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
| 2 | fvco2 6981 | . 2 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) | |
| 3 | 1, 2 | sylanb 581 | 1 ⊢ ((Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝐴) = (𝐹‘(𝐺‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 dom cdm 5659 ∘ ccom 5663 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: fin23lem30 10361 hashkf 14355 hashgval 14356 gsumpropd2lem 18662 ofco2 22394 opfv 32627 xppreima 32628 psgnfzto1stlem 33116 cycpmfv1 33129 cycpmfv2 33130 cyc3co2 33156 smatlem 33833 mdetpmtr1 33859 madjusmdetlem2 33864 madjusmdetlem4 33866 eulerpartlemgvv 34413 eulerpartlemgu 34414 sseqfv2 34431 reprpmtf1o 34663 hgt750lemg 34691 aks5lem2 42205 comptiunov2i 43697 choicefi 45191 fvcod 45218 evthiccabs 45492 cncficcgt0 45884 dvsinax 45909 fvvolioof 45985 fvvolicof 45987 stirlinglem14 46083 fourierdlem42 46145 hoicvr 46544 hoi2toco 46603 ovolval3 46643 ovolval4lem1 46645 ovnovollem1 46652 ovnovollem2 46653 |
| Copyright terms: Public domain | W3C validator |