MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco Structured version   Visualization version   GIF version

Theorem fvco 6866
Description: Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
Assertion
Ref Expression
fvco ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))

Proof of Theorem fvco
StepHypRef Expression
1 funfn 6464 . 2 (Fun 𝐺𝐺 Fn dom 𝐺)
2 fvco2 6865 . 2 ((𝐺 Fn dom 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
31, 2sylanb 581 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  dom cdm 5589  ccom 5593  Fun wfun 6427   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  fin23lem30  10098  hashkf  14046  hashgval  14047  gsumpropd2lem  18363  ofco2  21600  opfv  30982  xppreima  30983  psgnfzto1stlem  31367  cycpmfv1  31380  cycpmfv2  31381  cyc3co2  31407  smatlem  31747  mdetpmtr1  31773  madjusmdetlem2  31778  madjusmdetlem4  31780  eulerpartlemgvv  32343  eulerpartlemgu  32344  sseqfv2  32361  reprpmtf1o  32606  hgt750lemg  32634  comptiunov2i  41314  choicefi  42740  fvcod  42766  evthiccabs  43034  cncficcgt0  43429  dvsinax  43454  fvvolioof  43530  fvvolicof  43532  stirlinglem14  43628  fourierdlem42  43690  hoicvr  44086  hoi2toco  44145  ovolval3  44185  ovolval4lem1  44187  ovnovollem1  44194  ovnovollem2  44195
  Copyright terms: Public domain W3C validator