Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvpr2gOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fvpr2g 7042 as of 26-Sep-2024. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fvpr2gOLD | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4665 | . . . . . 6 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉} | |
2 | df-pr 4561 | . . . . . 6 ⊢ {〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉} = ({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉}) | |
3 | 1, 2 | eqtri 2767 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉}) |
4 | 3 | fveq1i 6754 | . . . 4 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = (({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉})‘𝐵) |
5 | fvunsn 7030 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → (({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉})‘𝐵) = ({〈𝐵, 𝐷〉}‘𝐵)) | |
6 | 4, 5 | syl5eq 2792 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = ({〈𝐵, 𝐷〉}‘𝐵)) |
7 | 6 | 3ad2ant3 1137 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = ({〈𝐵, 𝐷〉}‘𝐵)) |
8 | fvsng 7031 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ({〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | |
9 | 8 | 3adant3 1134 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
10 | 7, 9 | eqtrd 2779 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ∪ cun 3882 {csn 4558 {cpr 4560 〈cop 4564 ‘cfv 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-res 5591 df-iota 6373 df-fun 6417 df-fv 6423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |