Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvpr2gOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fvpr2g 7063 as of 26-Sep-2024. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fvpr2gOLD | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4668 | . . . . . 6 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉} | |
2 | df-pr 4564 | . . . . . 6 ⊢ {〈𝐵, 𝐷〉, 〈𝐴, 𝐶〉} = ({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉}) | |
3 | 1, 2 | eqtri 2766 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉}) |
4 | 3 | fveq1i 6775 | . . . 4 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = (({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉})‘𝐵) |
5 | fvunsn 7051 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → (({〈𝐵, 𝐷〉} ∪ {〈𝐴, 𝐶〉})‘𝐵) = ({〈𝐵, 𝐷〉}‘𝐵)) | |
6 | 4, 5 | eqtrid 2790 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = ({〈𝐵, 𝐷〉}‘𝐵)) |
7 | 6 | 3ad2ant3 1134 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = ({〈𝐵, 𝐷〉}‘𝐵)) |
8 | fvsng 7052 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ({〈𝐵, 𝐷〉}‘𝐵) = 𝐷) | |
9 | 8 | 3adant3 1131 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
10 | 7, 9 | eqtrd 2778 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∪ cun 3885 {csn 4561 {cpr 4563 〈cop 4567 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |