MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr2gOLD Structured version   Visualization version   GIF version

Theorem fvpr2gOLD 7103
Description: Obsolete version of fvpr2g 7102 as of 26-Sep-2024. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvpr2gOLD ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)

Proof of Theorem fvpr2gOLD
StepHypRef Expression
1 prcom 4678 . . . . . 6 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩}
2 df-pr 4574 . . . . . 6 {⟨𝐵, 𝐷⟩, ⟨𝐴, 𝐶⟩} = ({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})
31, 2eqtri 2765 . . . . 5 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})
43fveq1i 6812 . . . 4 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = (({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})‘𝐵)
5 fvunsn 7090 . . . 4 (𝐴𝐵 → (({⟨𝐵, 𝐷⟩} ∪ {⟨𝐴, 𝐶⟩})‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
64, 5eqtrid 2789 . . 3 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
763ad2ant3 1134 . 2 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = ({⟨𝐵, 𝐷⟩}‘𝐵))
8 fvsng 7091 . . 3 ((𝐵𝑉𝐷𝑊) → ({⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
983adant3 1131 . 2 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
107, 9eqtrd 2777 1 ((𝐵𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wne 2941  cun 3895  {csn 4571  {cpr 4573  cop 4577  cfv 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-res 5619  df-iota 6417  df-fun 6467  df-fv 6473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator