Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvtp1g | Structured version Visualization version GIF version |
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
Ref | Expression |
---|---|
fvtp1g | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4570 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉}) | |
2 | 1 | fveq1i 6805 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) |
3 | necom 2995 | . . . . 5 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) | |
4 | fvunsn 7083 | . . . . 5 ⊢ (𝐶 ≠ 𝐴 → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) | |
5 | 3, 4 | sylbi 216 | . . . 4 ⊢ (𝐴 ≠ 𝐶 → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) |
6 | 5 | ad2antll 727 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) |
7 | fvpr1g 7094 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) | |
8 | 7 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) |
9 | 8 | adantrr 715 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) |
10 | 6, 9 | eqtrd 2776 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = 𝐷) |
11 | 2, 10 | eqtrid 2788 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∪ cun 3890 {csn 4565 {cpr 4567 {ctp 4569 〈cop 4571 ‘cfv 6458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-res 5612 df-iota 6410 df-fun 6460 df-fv 6466 |
This theorem is referenced by: fvtp2g 7106 estrreslem1 17898 estrreslem1OLD 17899 |
Copyright terms: Public domain | W3C validator |