![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvtp1g | Structured version Visualization version GIF version |
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
Ref | Expression |
---|---|
fvtp1g | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4629 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉}) | |
2 | 1 | fveq1i 6882 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) |
3 | necom 2995 | . . . . 5 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) | |
4 | fvunsn 7164 | . . . . 5 ⊢ (𝐶 ≠ 𝐴 → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) | |
5 | 3, 4 | sylbi 216 | . . . 4 ⊢ (𝐴 ≠ 𝐶 → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) |
6 | 5 | ad2antll 728 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) |
7 | fvpr1g 7175 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) | |
8 | 7 | 3expa 1119 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) |
9 | 8 | adantrr 716 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) |
10 | 6, 9 | eqtrd 2773 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = 𝐷) |
11 | 2, 10 | eqtrid 2785 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶)) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∪ cun 3944 {csn 4624 {cpr 4626 {ctp 4628 〈cop 4630 ‘cfv 6535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4905 df-br 5145 df-opab 5207 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6487 df-fun 6537 df-fv 6543 |
This theorem is referenced by: fvtp2g 7187 estrreslem1 18075 estrreslem1OLD 18076 |
Copyright terms: Public domain | W3C validator |