MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp1g Structured version   Visualization version   GIF version

Theorem fvtp1g 7186
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fvtp1g (((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)

Proof of Theorem fvtp1g
StepHypRef Expression
1 df-tp 4629 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})
21fveq1i 6882 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴)
3 necom 2995 . . . . 5 (𝐴𝐶𝐶𝐴)
4 fvunsn 7164 . . . . 5 (𝐶𝐴 → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴))
53, 4sylbi 216 . . . 4 (𝐴𝐶 → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴))
65ad2antll 728 . . 3 (((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴))
7 fvpr1g 7175 . . . . 5 ((𝐴𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴) = 𝐷)
873expa 1119 . . . 4 (((𝐴𝑉𝐷𝑊) ∧ 𝐴𝐵) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴) = 𝐷)
98adantrr 716 . . 3 (((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴) = 𝐷)
106, 9eqtrd 2773 . 2 (((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = 𝐷)
112, 10eqtrid 2785 1 (((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  cun 3944  {csn 4624  {cpr 4626  {ctp 4628  cop 4630  cfv 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-br 5145  df-opab 5207  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-res 5684  df-iota 6487  df-fun 6537  df-fv 6543
This theorem is referenced by:  fvtp2g  7187  estrreslem1  18075  estrreslem1OLD  18076
  Copyright terms: Public domain W3C validator