MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr1g Structured version   Visualization version   GIF version

Theorem fvpr1g 7132
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr1g ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)

Proof of Theorem fvpr1g
StepHypRef Expression
1 df-pr 4580 . . . . 5 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
21fveq1i 6831 . . . 4 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴)
3 necom 2982 . . . . 5 (𝐴𝐵𝐵𝐴)
4 fvunsn 7121 . . . . 5 (𝐵𝐴 → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
53, 4sylbi 217 . . . 4 (𝐴𝐵 → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
62, 5eqtrid 2780 . . 3 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
763ad2ant3 1135 . 2 ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
8 fvsng 7122 . . 3 ((𝐴𝑉𝐶𝑊) → ({⟨𝐴, 𝐶⟩}‘𝐴) = 𝐶)
983adant3 1132 . 2 ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩}‘𝐴) = 𝐶)
107, 9eqtrd 2768 1 ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cun 3896  {csn 4577  {cpr 4579  cop 4583  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-iota 6444  df-fun 6490  df-fv 6496
This theorem is referenced by:  fvpr2g  7133  fvpr1  7134  fvtp1g  7140  fpropnf1  7209  f1prex  7226  wrdlen2i  14853  fvpr0o  17467  linds2eq  33355  zlmodzxzscm  48484  zlmodzxzadd  48485  lincvalpr  48546  ldepspr  48601  2arymptfv  48778  fv1prop  48827  prelrrx2b  48842  line2ylem  48879  line2  48880  line2x  48882  line2y  48883
  Copyright terms: Public domain W3C validator