| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvpr1g | Structured version Visualization version GIF version | ||
| Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| fvpr1g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4595 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
| 2 | 1 | fveq1i 6862 | . . . 4 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) |
| 3 | necom 2979 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 4 | fvunsn 7156 | . . . . 5 ⊢ (𝐵 ≠ 𝐴 → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) | |
| 5 | 3, 4 | sylbi 217 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 6 | 2, 5 | eqtrid 2777 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 7 | 6 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 8 | fvsng 7157 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({〈𝐴, 𝐶〉}‘𝐴) = 𝐶) | |
| 9 | 8 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉}‘𝐴) = 𝐶) |
| 10 | 7, 9 | eqtrd 2765 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∪ cun 3915 {csn 4592 {cpr 4594 〈cop 4598 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: fvpr2g 7168 fvpr1 7169 fvtp1g 7175 fpropnf1 7245 f1prex 7262 wrdlen2i 14915 fvpr0o 17529 linds2eq 33359 zlmodzxzscm 48349 zlmodzxzadd 48350 lincvalpr 48411 ldepspr 48466 2arymptfv 48643 fv1prop 48692 prelrrx2b 48707 line2ylem 48744 line2 48745 line2x 48747 line2y 48748 |
| Copyright terms: Public domain | W3C validator |