MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr1g Structured version   Visualization version   GIF version

Theorem fvpr1g 6945
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr1g ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)

Proof of Theorem fvpr1g
StepHypRef Expression
1 df-pr 4553 . . . . 5 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
21fveq1i 6662 . . . 4 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴)
3 necom 3067 . . . . 5 (𝐴𝐵𝐵𝐴)
4 fvunsn 6932 . . . . 5 (𝐵𝐴 → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
53, 4sylbi 220 . . . 4 (𝐴𝐵 → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
62, 5syl5eq 2871 . . 3 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
763ad2ant3 1132 . 2 ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
8 fvsng 6933 . . 3 ((𝐴𝑉𝐶𝑊) → ({⟨𝐴, 𝐶⟩}‘𝐴) = 𝐶)
983adant3 1129 . 2 ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩}‘𝐴) = 𝐶)
107, 9eqtrd 2859 1 ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2115  wne 3014  cun 3917  {csn 4550  {cpr 4552  cop 4556  cfv 6343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-res 5554  df-iota 6302  df-fun 6345  df-fv 6351
This theorem is referenced by:  fvtp1g  6951  fpropnf1  7017  f1prex  7032  wrdlen2i  14304  fvpr0o  16832  linds2eq  30981  zlmodzxzscm  44690  zlmodzxzadd  44691  lincvalpr  44758  ldepspr  44813  2arymptfv  44995  fv1prop  45044  prelrrx2b  45059  line2ylem  45096  line2  45097  line2x  45099  line2y  45100
  Copyright terms: Public domain W3C validator