| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvpr1g | Structured version Visualization version GIF version | ||
| Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| fvpr1g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4580 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
| 2 | 1 | fveq1i 6831 | . . . 4 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) |
| 3 | necom 2982 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 4 | fvunsn 7121 | . . . . 5 ⊢ (𝐵 ≠ 𝐴 → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) | |
| 5 | 3, 4 | sylbi 217 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 6 | 2, 5 | eqtrid 2780 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 7 | 6 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
| 8 | fvsng 7122 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({〈𝐴, 𝐶〉}‘𝐴) = 𝐶) | |
| 9 | 8 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉}‘𝐴) = 𝐶) |
| 10 | 7, 9 | eqtrd 2768 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∪ cun 3896 {csn 4577 {cpr 4579 〈cop 4583 ‘cfv 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-res 5633 df-iota 6444 df-fun 6490 df-fv 6496 |
| This theorem is referenced by: fvpr2g 7133 fvpr1 7134 fvtp1g 7140 fpropnf1 7209 f1prex 7226 wrdlen2i 14853 fvpr0o 17467 linds2eq 33355 zlmodzxzscm 48484 zlmodzxzadd 48485 lincvalpr 48546 ldepspr 48601 2arymptfv 48778 fv1prop 48827 prelrrx2b 48842 line2ylem 48879 line2 48880 line2x 48882 line2y 48883 |
| Copyright terms: Public domain | W3C validator |