MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr1g Structured version   Visualization version   GIF version

Theorem fvpr1g 7164
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
fvpr1g ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)

Proof of Theorem fvpr1g
StepHypRef Expression
1 df-pr 4592 . . . . 5 {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} = ({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})
21fveq1i 6859 . . . 4 ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴)
3 necom 2978 . . . . 5 (𝐴𝐵𝐵𝐴)
4 fvunsn 7153 . . . . 5 (𝐵𝐴 → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
53, 4sylbi 217 . . . 4 (𝐴𝐵 → (({⟨𝐴, 𝐶⟩} ∪ {⟨𝐵, 𝐷⟩})‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
62, 5eqtrid 2776 . . 3 (𝐴𝐵 → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
763ad2ant3 1135 . 2 ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = ({⟨𝐴, 𝐶⟩}‘𝐴))
8 fvsng 7154 . . 3 ((𝐴𝑉𝐶𝑊) → ({⟨𝐴, 𝐶⟩}‘𝐴) = 𝐶)
983adant3 1132 . 2 ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩}‘𝐴) = 𝐶)
107, 9eqtrd 2764 1 ((𝐴𝑉𝐶𝑊𝐴𝐵) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}‘𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cun 3912  {csn 4589  {cpr 4591  cop 4595  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519
This theorem is referenced by:  fvpr2g  7165  fvpr1  7166  fvtp1g  7172  fpropnf1  7242  f1prex  7259  wrdlen2i  14908  fvpr0o  17522  linds2eq  33352  zlmodzxzscm  48345  zlmodzxzadd  48346  lincvalpr  48407  ldepspr  48462  2arymptfv  48639  fv1prop  48688  prelrrx2b  48703  line2ylem  48740  line2  48741  line2x  48743  line2y  48744
  Copyright terms: Public domain W3C validator