Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvpr1g | Structured version Visualization version GIF version |
Description: The value of a function with a domain of (at most) two elements. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
Ref | Expression |
---|---|
fvpr1g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4561 | . . . . 5 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
2 | 1 | fveq1i 6757 | . . . 4 ⊢ ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) |
3 | necom 2996 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
4 | fvunsn 7033 | . . . . 5 ⊢ (𝐵 ≠ 𝐴 → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) | |
5 | 3, 4 | sylbi 216 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → (({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
6 | 2, 5 | eqtrid 2790 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
7 | 6 | 3ad2ant3 1133 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = ({〈𝐴, 𝐶〉}‘𝐴)) |
8 | fvsng 7034 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({〈𝐴, 𝐶〉}‘𝐴) = 𝐶) | |
9 | 8 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉}‘𝐴) = 𝐶) |
10 | 7, 9 | eqtrd 2778 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∪ cun 3881 {csn 4558 {cpr 4560 〈cop 4564 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: fvpr2g 7045 fvpr1 7047 fvtp1g 7055 fpropnf1 7121 f1prex 7136 wrdlen2i 14583 fvpr0o 17187 linds2eq 31477 zlmodzxzscm 45581 zlmodzxzadd 45582 lincvalpr 45647 ldepspr 45702 2arymptfv 45884 fv1prop 45933 prelrrx2b 45948 line2ylem 45985 line2 45986 line2x 45988 line2y 45989 |
Copyright terms: Public domain | W3C validator |