![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grurankrcld | Structured version Visualization version GIF version |
Description: If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
Ref | Expression |
---|---|
grurankrcld.1 | β’ (π β πΊ β Univ) |
grurankrcld.2 | β’ (π β (rankβπ΄) β πΊ) |
grurankrcld.3 | β’ (π β π΄ β π) |
Ref | Expression |
---|---|
grurankrcld | β’ (π β π΄ β πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grurankrcld.1 | . 2 β’ (π β πΊ β Univ) | |
2 | grurankrcld.2 | . . 3 β’ (π β (rankβπ΄) β πΊ) | |
3 | 1, 2 | grur1cld 43733 | . 2 β’ (π β (π 1β(rankβπ΄)) β πΊ) |
4 | grurankrcld.3 | . . 3 β’ (π β π΄ β π) | |
5 | r1rankid 9880 | . . 3 β’ (π΄ β π β π΄ β (π 1β(rankβπ΄))) | |
6 | 4, 5 | syl 17 | . 2 β’ (π β π΄ β (π 1β(rankβπ΄))) |
7 | gruss 10817 | . 2 β’ ((πΊ β Univ β§ (π 1β(rankβπ΄)) β πΊ β§ π΄ β (π 1β(rankβπ΄))) β π΄ β πΊ) | |
8 | 1, 3, 6, 7 | syl3anc 1368 | 1 β’ (π β π΄ β πΊ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 β wss 3940 βcfv 6542 π 1cr1 9783 rankcrnk 9784 Univcgru 10811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-reg 9613 ax-inf2 9662 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-map 8843 df-r1 9785 df-rank 9786 df-gru 10812 |
This theorem is referenced by: gruscottcld 43750 |
Copyright terms: Public domain | W3C validator |