![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpval | Structured version Visualization version GIF version |
Description: Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
Ref | Expression |
---|---|
iccpval | ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7402 | . . . 4 ⊢ (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀)) | |
2 | 1 | oveq2d 7410 | . . 3 ⊢ (𝑚 = 𝑀 → (ℝ* ↑m (0...𝑚)) = (ℝ* ↑m (0...𝑀))) |
3 | oveq2 7402 | . . . 4 ⊢ (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀)) | |
4 | 3 | raleqdv 3325 | . . 3 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))) |
5 | 2, 4 | rabeqbidv 3449 | . 2 ⊢ (𝑚 = 𝑀 → {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
6 | df-iccp 45918 | . 2 ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | |
7 | ovex 7427 | . . 3 ⊢ (ℝ* ↑m (0...𝑀)) ∈ V | |
8 | 7 | rabex 5326 | . 2 ⊢ {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ∈ V |
9 | 5, 6, 8 | fvmpt 6985 | 1 ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {crab 3432 class class class wbr 5142 ‘cfv 6533 (class class class)co 7394 ↑m cmap 8805 0cc0 11094 1c1 11095 + caddc 11097 ℝ*cxr 11231 < clt 11232 ℕcn 12196 ...cfz 13468 ..^cfzo 13611 RePartciccp 45917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7397 df-iccp 45918 |
This theorem is referenced by: iccpart 45920 |
Copyright terms: Public domain | W3C validator |