| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpval | Structured version Visualization version GIF version | ||
| Description: Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpval | ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7361 | . . . 4 ⊢ (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀)) | |
| 2 | 1 | oveq2d 7369 | . . 3 ⊢ (𝑚 = 𝑀 → (ℝ* ↑m (0...𝑚)) = (ℝ* ↑m (0...𝑀))) |
| 3 | oveq2 7361 | . . . 4 ⊢ (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀)) | |
| 4 | 3 | raleqdv 3290 | . . 3 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))) |
| 5 | 2, 4 | rabeqbidv 3415 | . 2 ⊢ (𝑚 = 𝑀 → {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
| 6 | df-iccp 47399 | . 2 ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | |
| 7 | ovex 7386 | . . 3 ⊢ (ℝ* ↑m (0...𝑀)) ∈ V | |
| 8 | 7 | rabex 5281 | . 2 ⊢ {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ∈ V |
| 9 | 5, 6, 8 | fvmpt 6934 | 1 ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 0cc0 11028 1c1 11029 + caddc 11031 ℝ*cxr 11167 < clt 11168 ℕcn 12146 ...cfz 13428 ..^cfzo 13575 RePartciccp 47398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-iccp 47399 |
| This theorem is referenced by: iccpart 47401 |
| Copyright terms: Public domain | W3C validator |