| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpval | Structured version Visualization version GIF version | ||
| Description: Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpval | ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7349 | . . . 4 ⊢ (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀)) | |
| 2 | 1 | oveq2d 7357 | . . 3 ⊢ (𝑚 = 𝑀 → (ℝ* ↑m (0...𝑚)) = (ℝ* ↑m (0...𝑀))) |
| 3 | oveq2 7349 | . . . 4 ⊢ (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀)) | |
| 4 | 3 | raleqdv 3292 | . . 3 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))) |
| 5 | 2, 4 | rabeqbidv 3413 | . 2 ⊢ (𝑚 = 𝑀 → {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
| 6 | df-iccp 47445 | . 2 ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | |
| 7 | ovex 7374 | . . 3 ⊢ (ℝ* ↑m (0...𝑀)) ∈ V | |
| 8 | 7 | rabex 5272 | . 2 ⊢ {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ∈ V |
| 9 | 5, 6, 8 | fvmpt 6924 | 1 ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ↑m cmap 8745 0cc0 11001 1c1 11002 + caddc 11004 ℝ*cxr 11140 < clt 11141 ℕcn 12120 ...cfz 13402 ..^cfzo 13549 RePartciccp 47444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-iccp 47445 |
| This theorem is referenced by: iccpart 47447 |
| Copyright terms: Public domain | W3C validator |