Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpval Structured version   Visualization version   GIF version

Theorem iccpval 47416
Description: Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.)
Assertion
Ref Expression
iccpval (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
Distinct variable group:   𝑖,𝑝,𝑀

Proof of Theorem iccpval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . . 4 (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀))
21oveq2d 7403 . . 3 (𝑚 = 𝑀 → (ℝ*m (0...𝑚)) = (ℝ*m (0...𝑀)))
3 oveq2 7395 . . . 4 (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀))
43raleqdv 3299 . . 3 (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))))
52, 4rabeqbidv 3424 . 2 (𝑚 = 𝑀 → {𝑝 ∈ (ℝ*m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
6 df-iccp 47415 . 2 RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ*m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
7 ovex 7420 . . 3 (ℝ*m (0...𝑀)) ∈ V
87rabex 5294 . 2 {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} ∈ V
95, 6, 8fvmpt 6968 1 (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3405   class class class wbr 5107  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cn 12186  ...cfz 13468  ..^cfzo 13615  RePartciccp 47414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-iccp 47415
This theorem is referenced by:  iccpart  47417
  Copyright terms: Public domain W3C validator