| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpval | Structured version Visualization version GIF version | ||
| Description: Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpval | ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7418 | . . . 4 ⊢ (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀)) | |
| 2 | 1 | oveq2d 7426 | . . 3 ⊢ (𝑚 = 𝑀 → (ℝ* ↑m (0...𝑚)) = (ℝ* ↑m (0...𝑀))) |
| 3 | oveq2 7418 | . . . 4 ⊢ (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀)) | |
| 4 | 3 | raleqdv 3309 | . . 3 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))) |
| 5 | 2, 4 | rabeqbidv 3439 | . 2 ⊢ (𝑚 = 𝑀 → {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
| 6 | df-iccp 47395 | . 2 ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | |
| 7 | ovex 7443 | . . 3 ⊢ (ℝ* ↑m (0...𝑀)) ∈ V | |
| 8 | 7 | rabex 5314 | . 2 ⊢ {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ∈ V |
| 9 | 5, 6, 8 | fvmpt 6991 | 1 ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 0cc0 11134 1c1 11135 + caddc 11137 ℝ*cxr 11273 < clt 11274 ℕcn 12245 ...cfz 13529 ..^cfzo 13676 RePartciccp 47394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-iccp 47395 |
| This theorem is referenced by: iccpart 47397 |
| Copyright terms: Public domain | W3C validator |