Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpart Structured version   Visualization version   GIF version

Theorem iccpart 47376
Description: A special partition. Corresponds to fourierdlem2 46096 in GS's mathbox. (Contributed by AV, 9-Jul-2020.)
Assertion
Ref Expression
iccpart (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖

Proof of Theorem iccpart
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 iccpval 47375 . . 3 (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
21eleq2d 2819 . 2 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ 𝑃 ∈ {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))}))
3 fveq1 6885 . . . . 5 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
4 fveq1 6885 . . . . 5 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
53, 4breq12d 5136 . . . 4 (𝑝 = 𝑃 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑃𝑖) < (𝑃‘(𝑖 + 1))))
65ralbidv 3165 . . 3 (𝑝 = 𝑃 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))))
76elrab 3675 . 2 (𝑃 ∈ {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))))
82, 7bitrdi 287 1 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  {crab 3419   class class class wbr 5123  cfv 6541  (class class class)co 7413  m cmap 8848  0cc0 11137  1c1 11138   + caddc 11140  *cxr 11276   < clt 11277  cn 12248  ...cfz 13529  ..^cfzo 13676  RePartciccp 47373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-iccp 47374
This theorem is referenced by:  iccpartimp  47377  iccpartres  47378  iccpartxr  47379  iccpartrn  47390  iccpartf  47391  iccpartnel  47398
  Copyright terms: Public domain W3C validator