![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpart | Structured version Visualization version GIF version |
Description: A special partition. Corresponds to fourierdlem2 41120 in GS's mathbox. (Contributed by AV, 9-Jul-2020.) |
Ref | Expression |
---|---|
iccpart | ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpval 42239 | . . 3 ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | |
2 | 1 | eleq2d 2892 | . 2 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ 𝑃 ∈ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))})) |
3 | fveq1 6432 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝‘𝑖) = (𝑃‘𝑖)) | |
4 | fveq1 6432 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) | |
5 | 3, 4 | breq12d 4886 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
6 | 5 | ralbidv 3195 | . . 3 ⊢ (𝑝 = 𝑃 → (∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
7 | 6 | elrab 3585 | . 2 ⊢ (𝑃 ∈ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
8 | 2, 7 | syl6bb 279 | 1 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3117 {crab 3121 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 ↑𝑚 cmap 8122 0cc0 10252 1c1 10253 + caddc 10255 ℝ*cxr 10390 < clt 10391 ℕcn 11350 ...cfz 12619 ..^cfzo 12760 RePartciccp 42237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-iota 6086 df-fun 6125 df-fv 6131 df-ov 6908 df-iccp 42238 |
This theorem is referenced by: iccpartimp 42241 iccpartres 42242 iccpartxr 42243 iccpartrn 42254 iccpartf 42255 iccpartnel 42262 |
Copyright terms: Public domain | W3C validator |