Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpart Structured version   Visualization version   GIF version

Theorem iccpart 46074
Description: A special partition. Corresponds to fourierdlem2 44815 in GS's mathbox. (Contributed by AV, 9-Jul-2020.)
Assertion
Ref Expression
iccpart (𝑀 ∈ β„• β†’ (𝑃 ∈ (RePartβ€˜π‘€) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘ƒβ€˜π‘–) < (π‘ƒβ€˜(𝑖 + 1)))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖

Proof of Theorem iccpart
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 iccpval 46073 . . 3 (𝑀 ∈ β„• β†’ (RePartβ€˜π‘€) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ βˆ€π‘– ∈ (0..^𝑀)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1))})
21eleq2d 2819 . 2 (𝑀 ∈ β„• β†’ (𝑃 ∈ (RePartβ€˜π‘€) ↔ 𝑃 ∈ {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ βˆ€π‘– ∈ (0..^𝑀)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1))}))
3 fveq1 6890 . . . . 5 (𝑝 = 𝑃 β†’ (π‘β€˜π‘–) = (π‘ƒβ€˜π‘–))
4 fveq1 6890 . . . . 5 (𝑝 = 𝑃 β†’ (π‘β€˜(𝑖 + 1)) = (π‘ƒβ€˜(𝑖 + 1)))
53, 4breq12d 5161 . . . 4 (𝑝 = 𝑃 β†’ ((π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)) ↔ (π‘ƒβ€˜π‘–) < (π‘ƒβ€˜(𝑖 + 1))))
65ralbidv 3177 . . 3 (𝑝 = 𝑃 β†’ (βˆ€π‘– ∈ (0..^𝑀)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)) ↔ βˆ€π‘– ∈ (0..^𝑀)(π‘ƒβ€˜π‘–) < (π‘ƒβ€˜(𝑖 + 1))))
76elrab 3683 . 2 (𝑃 ∈ {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ βˆ€π‘– ∈ (0..^𝑀)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1))} ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘ƒβ€˜π‘–) < (π‘ƒβ€˜(𝑖 + 1))))
82, 7bitrdi 286 1 (𝑀 ∈ β„• β†’ (𝑃 ∈ (RePartβ€˜π‘€) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘ƒβ€˜π‘–) < (π‘ƒβ€˜(𝑖 + 1)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408   ↑m cmap 8819  0cc0 11109  1c1 11110   + caddc 11112  β„*cxr 11246   < clt 11247  β„•cn 12211  ...cfz 13483  ..^cfzo 13626  RePartciccp 46071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-iccp 46072
This theorem is referenced by:  iccpartimp  46075  iccpartres  46076  iccpartxr  46077  iccpartrn  46088  iccpartf  46089  iccpartnel  46096
  Copyright terms: Public domain W3C validator