![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpart | Structured version Visualization version GIF version |
Description: A special partition. Corresponds to fourierdlem2 45286 in GS's mathbox. (Contributed by AV, 9-Jul-2020.) |
Ref | Expression |
---|---|
iccpart | ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpval 46544 | . . 3 ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | |
2 | 1 | eleq2d 2818 | . 2 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ 𝑃 ∈ {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))})) |
3 | fveq1 6890 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝‘𝑖) = (𝑃‘𝑖)) | |
4 | fveq1 6890 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) | |
5 | 3, 4 | breq12d 5161 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
6 | 5 | ralbidv 3176 | . . 3 ⊢ (𝑝 = 𝑃 → (∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
7 | 6 | elrab 3683 | . 2 ⊢ (𝑃 ∈ {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
8 | 2, 7 | bitrdi 287 | 1 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8826 0cc0 11116 1c1 11117 + caddc 11119 ℝ*cxr 11254 < clt 11255 ℕcn 12219 ...cfz 13491 ..^cfzo 13634 RePartciccp 46542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-iccp 46543 |
This theorem is referenced by: iccpartimp 46546 iccpartres 46547 iccpartxr 46548 iccpartrn 46559 iccpartf 46560 iccpartnel 46567 |
Copyright terms: Public domain | W3C validator |