Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpart Structured version   Visualization version   GIF version

Theorem iccpart 47421
Description: A special partition. Corresponds to fourierdlem2 46114 in GS's mathbox. (Contributed by AV, 9-Jul-2020.)
Assertion
Ref Expression
iccpart (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖

Proof of Theorem iccpart
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 iccpval 47420 . . 3 (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
21eleq2d 2815 . 2 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ 𝑃 ∈ {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))}))
3 fveq1 6860 . . . . 5 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
4 fveq1 6860 . . . . 5 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
53, 4breq12d 5123 . . . 4 (𝑝 = 𝑃 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑃𝑖) < (𝑃‘(𝑖 + 1))))
65ralbidv 3157 . . 3 (𝑝 = 𝑃 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))))
76elrab 3662 . 2 (𝑃 ∈ {𝑝 ∈ (ℝ*m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))))
82, 7bitrdi 287 1 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408   class class class wbr 5110  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cn 12193  ...cfz 13475  ..^cfzo 13622  RePartciccp 47418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-iccp 47419
This theorem is referenced by:  iccpartimp  47422  iccpartres  47423  iccpartxr  47424  iccpartrn  47435  iccpartf  47436  iccpartnel  47443
  Copyright terms: Public domain W3C validator