| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpart | Structured version Visualization version GIF version | ||
| Description: A special partition. Corresponds to fourierdlem2 46096 in GS's mathbox. (Contributed by AV, 9-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpart | ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpval 47375 | . . 3 ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ 𝑃 ∈ {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))})) |
| 3 | fveq1 6885 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝‘𝑖) = (𝑃‘𝑖)) | |
| 4 | fveq1 6885 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) | |
| 5 | 3, 4 | breq12d 5136 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
| 6 | 5 | ralbidv 3165 | . . 3 ⊢ (𝑝 = 𝑃 → (∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
| 7 | 6 | elrab 3675 | . 2 ⊢ (𝑃 ∈ {𝑝 ∈ (ℝ* ↑m (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
| 8 | 2, 7 | bitrdi 287 | 1 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 0cc0 11137 1c1 11138 + caddc 11140 ℝ*cxr 11276 < clt 11277 ℕcn 12248 ...cfz 13529 ..^cfzo 13676 RePartciccp 47373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-iccp 47374 |
| This theorem is referenced by: iccpartimp 47377 iccpartres 47378 iccpartxr 47379 iccpartrn 47390 iccpartf 47391 iccpartnel 47398 |
| Copyright terms: Public domain | W3C validator |