MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqsalvOLD Structured version   Visualization version   GIF version

Theorem imaeqsalvOLD 7298
Description: Obsolete version of ralima 7171 as of 14-Aug-2025. Duplicate version of ralima 7171. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
imaeqsexvOLD.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
imaeqsalvOLD ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem imaeqsalvOLD
StepHypRef Expression
1 imaeqsexvOLD.1 . . . . 5 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
21notbid 318 . . . 4 (𝑥 = (𝐹𝑦) → (¬ 𝜑 ↔ ¬ 𝜓))
32imaeqsexvOLD 7297 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑 ↔ ∃𝑦𝐵 ¬ 𝜓))
43notbid 318 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (¬ ∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑 ↔ ¬ ∃𝑦𝐵 ¬ 𝜓))
5 dfral2 3083 . 2 (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ¬ ∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑)
6 dfral2 3083 . 2 (∀𝑦𝐵 𝜓 ↔ ¬ ∃𝑦𝐵 ¬ 𝜓)
74, 5, 63bitr4g 314 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wral 3047  wrex 3056  wss 3897  cima 5617   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator