![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeqsalvOLD | Structured version Visualization version GIF version |
Description: Duplicate version of ralima 7274. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imaeqsexvOLD.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
imaeqsalvOLD | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeqsexvOLD.1 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑦) → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | imaeqsexvOLD 7399 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑 ↔ ∃𝑦 ∈ 𝐵 ¬ 𝜓)) |
4 | 3 | notbid 318 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜓)) |
5 | dfral2 3105 | . 2 ⊢ (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ¬ ∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑) | |
6 | dfral2 3105 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 “ cima 5703 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |