| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeqsalvOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of ralima 7255 as of 14-Aug-2025. Duplicate version of ralima 7255. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| imaeqsexvOLD.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| imaeqsalvOLD | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeqsexvOLD.1 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑦) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | imaeqsexvOLD 7381 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑 ↔ ∃𝑦 ∈ 𝐵 ¬ 𝜓)) |
| 4 | 3 | notbid 318 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜓)) |
| 5 | dfral2 3098 | . 2 ⊢ (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ¬ ∃𝑥 ∈ (𝐹 “ 𝐵) ¬ 𝜑) | |
| 6 | dfral2 3098 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜓) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 “ cima 5686 Fn wfn 6554 ‘cfv 6559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-fv 6567 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |