MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqsalvOLD Structured version   Visualization version   GIF version

Theorem imaeqsalvOLD 7383
Description: Obsolete version of ralima 7256 as of 14-Aug-2025. Duplicate version of ralima 7256. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
imaeqsexvOLD.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
imaeqsalvOLD ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem imaeqsalvOLD
StepHypRef Expression
1 imaeqsexvOLD.1 . . . . 5 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
21notbid 318 . . . 4 (𝑥 = (𝐹𝑦) → (¬ 𝜑 ↔ ¬ 𝜓))
32imaeqsexvOLD 7382 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑 ↔ ∃𝑦𝐵 ¬ 𝜓))
43notbid 318 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (¬ ∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑 ↔ ¬ ∃𝑦𝐵 ¬ 𝜓))
5 dfral2 3096 . 2 (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ¬ ∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑)
6 dfral2 3096 . 2 (∀𝑦𝐵 𝜓 ↔ ¬ ∃𝑦𝐵 ¬ 𝜓)
74, 5, 63bitr4g 314 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wral 3058  wrex 3067  wss 3962  cima 5691   Fn wfn 6557  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-fv 6570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator