MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqsalvOLD Structured version   Visualization version   GIF version

Theorem imaeqsalvOLD 7400
Description: Duplicate version of ralima 7274. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
imaeqsexvOLD.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
imaeqsalvOLD ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem imaeqsalvOLD
StepHypRef Expression
1 imaeqsexvOLD.1 . . . . 5 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
21notbid 318 . . . 4 (𝑥 = (𝐹𝑦) → (¬ 𝜑 ↔ ¬ 𝜓))
32imaeqsexvOLD 7399 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑 ↔ ∃𝑦𝐵 ¬ 𝜓))
43notbid 318 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (¬ ∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑 ↔ ¬ ∃𝑦𝐵 ¬ 𝜓))
5 dfral2 3105 . 2 (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ¬ ∃𝑥 ∈ (𝐹𝐵) ¬ 𝜑)
6 dfral2 3105 . 2 (∀𝑦𝐵 𝜓 ↔ ¬ ∃𝑦𝐵 ¬ 𝜓)
74, 5, 63bitr4g 314 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wral 3067  wrex 3076  wss 3976  cima 5703   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator