![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeqsexvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rexima 7257 as of 14-Aug-2025. Duplicate version of rexima 7257. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imaeqsexvOLD.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
imaeqsexvOLD | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3068 | . . 3 ⊢ (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑)) | |
2 | fvelimab 6980 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
3 | 2 | anbi1d 631 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
4 | 3 | exbidv 1918 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑) ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
5 | 1, 4 | bitrid 283 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
6 | rexcom4 3285 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑)) | |
7 | eqcom 2741 | . . . . . . 7 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
8 | 7 | anbi1i 624 | . . . . . 6 ⊢ (((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ (𝑥 = (𝐹‘𝑦) ∧ 𝜑)) |
9 | 8 | exbii 1844 | . . . . 5 ⊢ (∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝑥 = (𝐹‘𝑦) ∧ 𝜑)) |
10 | fvex 6919 | . . . . . 6 ⊢ (𝐹‘𝑦) ∈ V | |
11 | imaeqsexvOLD.1 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
12 | 10, 11 | ceqsexv 3529 | . . . . 5 ⊢ (∃𝑥(𝑥 = (𝐹‘𝑦) ∧ 𝜑) ↔ 𝜓) |
13 | 9, 12 | bitri 275 | . . . 4 ⊢ (∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ 𝜓) |
14 | 13 | rexbii 3091 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) |
15 | r19.41v 3186 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑)) | |
16 | 15 | exbii 1844 | . . 3 ⊢ (∃𝑥∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑)) |
17 | 6, 14, 16 | 3bitr3ri 302 | . 2 ⊢ (∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) |
18 | 5, 17 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∃wex 1775 ∈ wcel 2105 ∃wrex 3067 ⊆ wss 3962 “ cima 5691 Fn wfn 6557 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-fv 6570 |
This theorem is referenced by: imaeqsalvOLD 7383 |
Copyright terms: Public domain | W3C validator |