MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqsexvOLD Structured version   Visualization version   GIF version

Theorem imaeqsexvOLD 7355
Description: Obsolete version of rexima 7229 as of 14-Aug-2025. Duplicate version of rexima 7229. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
imaeqsexvOLD.1 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
imaeqsexvOLD ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem imaeqsexvOLD
StepHypRef Expression
1 df-rex 3061 . . 3 (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹𝐵) ∧ 𝜑))
2 fvelimab 6950 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
32anbi1d 631 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑥 ∈ (𝐹𝐵) ∧ 𝜑) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
43exbidv 1921 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥(𝑥 ∈ (𝐹𝐵) ∧ 𝜑) ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
51, 4bitrid 283 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑)))
6 rexcom4 3269 . . 3 (∃𝑦𝐵𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑))
7 eqcom 2742 . . . . . . 7 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
87anbi1i 624 . . . . . 6 (((𝐹𝑦) = 𝑥𝜑) ↔ (𝑥 = (𝐹𝑦) ∧ 𝜑))
98exbii 1848 . . . . 5 (∃𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥(𝑥 = (𝐹𝑦) ∧ 𝜑))
10 fvex 6888 . . . . . 6 (𝐹𝑦) ∈ V
11 imaeqsexvOLD.1 . . . . . 6 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
1210, 11ceqsexv 3511 . . . . 5 (∃𝑥(𝑥 = (𝐹𝑦) ∧ 𝜑) ↔ 𝜓)
139, 12bitri 275 . . . 4 (∃𝑥((𝐹𝑦) = 𝑥𝜑) ↔ 𝜓)
1413rexbii 3083 . . 3 (∃𝑦𝐵𝑥((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑦𝐵 𝜓)
15 r19.41v 3174 . . . 4 (∃𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑) ↔ (∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑))
1615exbii 1848 . . 3 (∃𝑥𝑦𝐵 ((𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑))
176, 14, 163bitr3ri 302 . 2 (∃𝑥(∃𝑦𝐵 (𝐹𝑦) = 𝑥𝜑) ↔ ∃𝑦𝐵 𝜓)
185, 17bitrdi 287 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3060  wss 3926  cima 5657   Fn wfn 6525  cfv 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-fv 6538
This theorem is referenced by:  imaeqsalvOLD  7356
  Copyright terms: Public domain W3C validator