![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeqsexvOLD | Structured version Visualization version GIF version |
Description: Duplicate version of ralima 7274. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imaeqsexvOLD.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
imaeqsexvOLD | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑)) | |
2 | fvelimab 6994 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
3 | 2 | anbi1d 630 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
4 | 3 | exbidv 1920 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑) ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
5 | 1, 4 | bitrid 283 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
6 | rexcom4 3294 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑)) | |
7 | eqcom 2747 | . . . . . . 7 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
8 | 7 | anbi1i 623 | . . . . . 6 ⊢ (((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ (𝑥 = (𝐹‘𝑦) ∧ 𝜑)) |
9 | 8 | exbii 1846 | . . . . 5 ⊢ (∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝑥 = (𝐹‘𝑦) ∧ 𝜑)) |
10 | fvex 6933 | . . . . . 6 ⊢ (𝐹‘𝑦) ∈ V | |
11 | imaeqsexvOLD.1 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
12 | 10, 11 | ceqsexv 3542 | . . . . 5 ⊢ (∃𝑥(𝑥 = (𝐹‘𝑦) ∧ 𝜑) ↔ 𝜓) |
13 | 9, 12 | bitri 275 | . . . 4 ⊢ (∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ 𝜓) |
14 | 13 | rexbii 3100 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) |
15 | r19.41v 3195 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑)) | |
16 | 15 | exbii 1846 | . . 3 ⊢ (∃𝑥∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑)) |
17 | 6, 14, 16 | 3bitr3ri 302 | . 2 ⊢ (∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) |
18 | 5, 17 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 “ cima 5703 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: imaeqsalvOLD 7400 |
Copyright terms: Public domain | W3C validator |