| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeqsexvOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rexima 7256 as of 14-Aug-2025. Duplicate version of rexima 7256. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| imaeqsexvOLD.1 | ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| imaeqsexvOLD | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑)) | |
| 2 | fvelimab 6979 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥)) | |
| 3 | 2 | anbi1d 631 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
| 4 | 3 | exbidv 1921 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥(𝑥 ∈ (𝐹 “ 𝐵) ∧ 𝜑) ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
| 5 | 1, 4 | bitrid 283 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑))) |
| 6 | rexcom4 3287 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑)) | |
| 7 | eqcom 2743 | . . . . . . 7 ⊢ ((𝐹‘𝑦) = 𝑥 ↔ 𝑥 = (𝐹‘𝑦)) | |
| 8 | 7 | anbi1i 624 | . . . . . 6 ⊢ (((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ (𝑥 = (𝐹‘𝑦) ∧ 𝜑)) |
| 9 | 8 | exbii 1848 | . . . . 5 ⊢ (∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝑥 = (𝐹‘𝑦) ∧ 𝜑)) |
| 10 | fvex 6917 | . . . . . 6 ⊢ (𝐹‘𝑦) ∈ V | |
| 11 | imaeqsexvOLD.1 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 12 | 10, 11 | ceqsexv 3531 | . . . . 5 ⊢ (∃𝑥(𝑥 = (𝐹‘𝑦) ∧ 𝜑) ↔ 𝜓) |
| 13 | 9, 12 | bitri 275 | . . . 4 ⊢ (∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ 𝜓) |
| 14 | 13 | rexbii 3093 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| 15 | r19.41v 3188 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑)) | |
| 16 | 15 | exbii 1848 | . . 3 ⊢ (∃𝑥∃𝑦 ∈ 𝐵 ((𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑)) |
| 17 | 6, 14, 16 | 3bitr3ri 302 | . 2 ⊢ (∃𝑥(∃𝑦 ∈ 𝐵 (𝐹‘𝑦) = 𝑥 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| 18 | 5, 17 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃wrex 3069 ⊆ wss 3950 “ cima 5686 Fn wfn 6554 ‘cfv 6559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-fv 6567 |
| This theorem is referenced by: imaeqsalvOLD 7382 |
| Copyright terms: Public domain | W3C validator |