| Step | Hyp | Ref
| Expression |
| 1 | | fmfnfm.l |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) |
| 2 | | filin 23792 |
. . . . . . . . 9
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿) → (𝑦 ∩ 𝑧) ∈ 𝐿) |
| 3 | 2 | 3expb 1120 |
. . . . . . . 8
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿)) → (𝑦 ∩ 𝑧) ∈ 𝐿) |
| 4 | 1, 3 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿)) → (𝑦 ∩ 𝑧) ∈ 𝐿) |
| 5 | | fmfnfm.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑌⟶𝑋) |
| 6 | | ffun 6709 |
. . . . . . . . 9
⊢ (𝐹:𝑌⟶𝑋 → Fun 𝐹) |
| 7 | | funcnvcnv 6603 |
. . . . . . . . 9
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
| 8 | | imain 6621 |
. . . . . . . . . 10
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑦 ∩ 𝑧)) = ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧))) |
| 9 | 8 | eqcomd 2741 |
. . . . . . . . 9
⊢ (Fun
◡◡𝐹 → ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ (𝑦 ∩ 𝑧))) |
| 10 | 5, 6, 7, 9 | 4syl 19 |
. . . . . . . 8
⊢ (𝜑 → ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ (𝑦 ∩ 𝑧))) |
| 11 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿)) → ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ (𝑦 ∩ 𝑧))) |
| 12 | | imaeq2 6043 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (◡𝐹 “ 𝑥) = (◡𝐹 “ (𝑦 ∩ 𝑧))) |
| 13 | 12 | rspceeqv 3624 |
. . . . . . 7
⊢ (((𝑦 ∩ 𝑧) ∈ 𝐿 ∧ ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ (𝑦 ∩ 𝑧))) → ∃𝑥 ∈ 𝐿 ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ 𝑥)) |
| 14 | 4, 11, 13 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿)) → ∃𝑥 ∈ 𝐿 ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ 𝑥)) |
| 15 | | ineq12 4190 |
. . . . . . . 8
⊢ ((𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) → (𝑠 ∩ 𝑡) = ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧))) |
| 16 | 15 | eqeq1d 2737 |
. . . . . . 7
⊢ ((𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) → ((𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥) ↔ ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ 𝑥))) |
| 17 | 16 | rexbidv 3164 |
. . . . . 6
⊢ ((𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) → (∃𝑥 ∈ 𝐿 (𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐿 ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ 𝑥))) |
| 18 | 14, 17 | syl5ibrcom 247 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿)) → ((𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) → ∃𝑥 ∈ 𝐿 (𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥))) |
| 19 | 18 | rexlimdvva 3198 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ 𝐿 ∃𝑧 ∈ 𝐿 (𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) → ∃𝑥 ∈ 𝐿 (𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥))) |
| 20 | | imaeq2 6043 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑦)) |
| 21 | 20 | eqeq2d 2746 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑠 = (◡𝐹 “ 𝑥) ↔ 𝑠 = (◡𝐹 “ 𝑦))) |
| 22 | 21 | cbvrexvw 3221 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐿 𝑠 = (◡𝐹 “ 𝑥) ↔ ∃𝑦 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑦)) |
| 23 | | imaeq2 6043 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑧)) |
| 24 | 23 | eqeq2d 2746 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑡 = (◡𝐹 “ 𝑥) ↔ 𝑡 = (◡𝐹 “ 𝑧))) |
| 25 | 24 | cbvrexvw 3221 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐿 𝑡 = (◡𝐹 “ 𝑥) ↔ ∃𝑧 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑧)) |
| 26 | 22, 25 | anbi12i 628 |
. . . . 5
⊢
((∃𝑥 ∈
𝐿 𝑠 = (◡𝐹 “ 𝑥) ∧ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥)) ↔ (∃𝑦 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑦) ∧ ∃𝑧 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑧))) |
| 27 | | eqid 2735 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) = (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) |
| 28 | 27 | elrnmpt 5938 |
. . . . . . 7
⊢ (𝑠 ∈ V → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥))) |
| 29 | 28 | elv 3464 |
. . . . . 6
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥)) |
| 30 | 27 | elrnmpt 5938 |
. . . . . . 7
⊢ (𝑡 ∈ V → (𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥))) |
| 31 | 30 | elv 3464 |
. . . . . 6
⊢ (𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥)) |
| 32 | 29, 31 | anbi12i 628 |
. . . . 5
⊢ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ (∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥) ∧ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥))) |
| 33 | | reeanv 3213 |
. . . . 5
⊢
(∃𝑦 ∈
𝐿 ∃𝑧 ∈ 𝐿 (𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) ↔ (∃𝑦 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑦) ∧ ∃𝑧 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑧))) |
| 34 | 26, 32, 33 | 3bitr4i 303 |
. . . 4
⊢ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ ∃𝑦 ∈ 𝐿 ∃𝑧 ∈ 𝐿 (𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧))) |
| 35 | | vex 3463 |
. . . . . 6
⊢ 𝑠 ∈ V |
| 36 | 35 | inex1 5287 |
. . . . 5
⊢ (𝑠 ∩ 𝑡) ∈ V |
| 37 | 27 | elrnmpt 5938 |
. . . . 5
⊢ ((𝑠 ∩ 𝑡) ∈ V → ((𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥))) |
| 38 | 36, 37 | ax-mp 5 |
. . . 4
⊢ ((𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥)) |
| 39 | 19, 34, 38 | 3imtr4g 296 |
. . 3
⊢ (𝜑 → ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) → (𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) |
| 40 | 39 | ralrimivv 3185 |
. 2
⊢ (𝜑 → ∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |
| 41 | | mptexg 7213 |
. . 3
⊢ (𝐿 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V) |
| 42 | | rnexg 7898 |
. . 3
⊢ ((𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V) |
| 43 | | inficl 9437 |
. . 3
⊢ (ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V → (∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) = ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) |
| 44 | 1, 41, 42, 43 | 4syl 19 |
. 2
⊢ (𝜑 → (∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) = ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) |
| 45 | 40, 44 | mpbid 232 |
1
⊢ (𝜑 → (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) = ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |