MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem3 Structured version   Visualization version   GIF version

Theorem fmfnfmlem3 23784
Description: Lemma for fmfnfm 23786. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem3 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌

Proof of Theorem fmfnfmlem3
Dummy variables 𝑠 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . . . . . 8 (𝜑𝐿 ∈ (Fil‘𝑋))
2 filin 23682 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑦𝐿𝑧𝐿) → (𝑦𝑧) ∈ 𝐿)
323expb 1117 . . . . . . . 8 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑦𝐿𝑧𝐿)) → (𝑦𝑧) ∈ 𝐿)
41, 3sylan 579 . . . . . . 7 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → (𝑦𝑧) ∈ 𝐿)
5 fmfnfm.f . . . . . . . . 9 (𝜑𝐹:𝑌𝑋)
6 ffun 6711 . . . . . . . . 9 (𝐹:𝑌𝑋 → Fun 𝐹)
7 funcnvcnv 6606 . . . . . . . . 9 (Fun 𝐹 → Fun 𝐹)
8 imain 6624 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑦𝑧)) = ((𝐹𝑦) ∩ (𝐹𝑧)))
98eqcomd 2730 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
105, 6, 7, 94syl 19 . . . . . . . 8 (𝜑 → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
1110adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
12 imaeq2 6046 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝐹𝑥) = (𝐹 “ (𝑦𝑧)))
1312rspceeqv 3626 . . . . . . 7 (((𝑦𝑧) ∈ 𝐿 ∧ ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧))) → ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥))
144, 11, 13syl2anc 583 . . . . . 6 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥))
15 ineq12 4200 . . . . . . . 8 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → (𝑠𝑡) = ((𝐹𝑦) ∩ (𝐹𝑧)))
1615eqeq1d 2726 . . . . . . 7 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ((𝑠𝑡) = (𝐹𝑥) ↔ ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥)))
1716rexbidv 3170 . . . . . 6 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → (∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥) ↔ ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥)))
1814, 17syl5ibrcom 246 . . . . 5 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
1918rexlimdvva 3203 . . . 4 (𝜑 → (∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
20 imaeq2 6046 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
2120eqeq2d 2735 . . . . . . 7 (𝑥 = 𝑦 → (𝑠 = (𝐹𝑥) ↔ 𝑠 = (𝐹𝑦)))
2221cbvrexvw 3227 . . . . . 6 (∃𝑥𝐿 𝑠 = (𝐹𝑥) ↔ ∃𝑦𝐿 𝑠 = (𝐹𝑦))
23 imaeq2 6046 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2423eqeq2d 2735 . . . . . . 7 (𝑥 = 𝑧 → (𝑡 = (𝐹𝑥) ↔ 𝑡 = (𝐹𝑧)))
2524cbvrexvw 3227 . . . . . 6 (∃𝑥𝐿 𝑡 = (𝐹𝑥) ↔ ∃𝑧𝐿 𝑡 = (𝐹𝑧))
2622, 25anbi12i 626 . . . . 5 ((∃𝑥𝐿 𝑠 = (𝐹𝑥) ∧ ∃𝑥𝐿 𝑡 = (𝐹𝑥)) ↔ (∃𝑦𝐿 𝑠 = (𝐹𝑦) ∧ ∃𝑧𝐿 𝑡 = (𝐹𝑧)))
27 eqid 2724 . . . . . . . 8 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
2827elrnmpt 5946 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
2928elv 3472 . . . . . 6 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
3027elrnmpt 5946 . . . . . . 7 (𝑡 ∈ V → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
3130elv 3472 . . . . . 6 (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥))
3229, 31anbi12i 626 . . . . 5 ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (∃𝑥𝐿 𝑠 = (𝐹𝑥) ∧ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
33 reeanv 3218 . . . . 5 (∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) ↔ (∃𝑦𝐿 𝑠 = (𝐹𝑦) ∧ ∃𝑧𝐿 𝑡 = (𝐹𝑧)))
3426, 32, 333bitr4i 303 . . . 4 ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)))
35 vex 3470 . . . . . 6 𝑠 ∈ V
3635inex1 5308 . . . . 5 (𝑠𝑡) ∈ V
3727elrnmpt 5946 . . . . 5 ((𝑠𝑡) ∈ V → ((𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
3836, 37ax-mp 5 . . . 4 ((𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥))
3919, 34, 383imtr4g 296 . . 3 (𝜑 → ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → (𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
4039ralrimivv 3190 . 2 (𝜑 → ∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
41 mptexg 7215 . . 3 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
42 rnexg 7889 . . 3 ((𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
43 inficl 9417 . . 3 (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → (∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥))))
441, 41, 42, 434syl 19 . 2 (𝜑 → (∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥))))
4540, 44mpbid 231 1 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  wrex 3062  Vcvv 3466  cin 3940  wss 3941  cmpt 5222  ccnv 5666  ran crn 5668  cima 5670  Fun wfun 6528  wf 6530  cfv 6534  (class class class)co 7402  ficfi 9402  fBascfbas 21218  Filcfil 23673   FilMap cfm 23761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-om 7850  df-1o 8462  df-er 8700  df-en 8937  df-fin 8940  df-fi 9403  df-fbas 21227  df-fil 23674
This theorem is referenced by:  fmfnfmlem4  23785
  Copyright terms: Public domain W3C validator