MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem3 Structured version   Visualization version   GIF version

Theorem fmfnfmlem3 23985
Description: Lemma for fmfnfm 23987. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem3 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌

Proof of Theorem fmfnfmlem3
Dummy variables 𝑠 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . . . . . 8 (𝜑𝐿 ∈ (Fil‘𝑋))
2 filin 23883 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑦𝐿𝑧𝐿) → (𝑦𝑧) ∈ 𝐿)
323expb 1120 . . . . . . . 8 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑦𝐿𝑧𝐿)) → (𝑦𝑧) ∈ 𝐿)
41, 3sylan 579 . . . . . . 7 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → (𝑦𝑧) ∈ 𝐿)
5 fmfnfm.f . . . . . . . . 9 (𝜑𝐹:𝑌𝑋)
6 ffun 6750 . . . . . . . . 9 (𝐹:𝑌𝑋 → Fun 𝐹)
7 funcnvcnv 6645 . . . . . . . . 9 (Fun 𝐹 → Fun 𝐹)
8 imain 6663 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑦𝑧)) = ((𝐹𝑦) ∩ (𝐹𝑧)))
98eqcomd 2746 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
105, 6, 7, 94syl 19 . . . . . . . 8 (𝜑 → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
1110adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
12 imaeq2 6085 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝐹𝑥) = (𝐹 “ (𝑦𝑧)))
1312rspceeqv 3658 . . . . . . 7 (((𝑦𝑧) ∈ 𝐿 ∧ ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧))) → ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥))
144, 11, 13syl2anc 583 . . . . . 6 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥))
15 ineq12 4236 . . . . . . . 8 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → (𝑠𝑡) = ((𝐹𝑦) ∩ (𝐹𝑧)))
1615eqeq1d 2742 . . . . . . 7 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ((𝑠𝑡) = (𝐹𝑥) ↔ ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥)))
1716rexbidv 3185 . . . . . 6 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → (∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥) ↔ ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥)))
1814, 17syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
1918rexlimdvva 3219 . . . 4 (𝜑 → (∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
20 imaeq2 6085 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
2120eqeq2d 2751 . . . . . . 7 (𝑥 = 𝑦 → (𝑠 = (𝐹𝑥) ↔ 𝑠 = (𝐹𝑦)))
2221cbvrexvw 3244 . . . . . 6 (∃𝑥𝐿 𝑠 = (𝐹𝑥) ↔ ∃𝑦𝐿 𝑠 = (𝐹𝑦))
23 imaeq2 6085 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2423eqeq2d 2751 . . . . . . 7 (𝑥 = 𝑧 → (𝑡 = (𝐹𝑥) ↔ 𝑡 = (𝐹𝑧)))
2524cbvrexvw 3244 . . . . . 6 (∃𝑥𝐿 𝑡 = (𝐹𝑥) ↔ ∃𝑧𝐿 𝑡 = (𝐹𝑧))
2622, 25anbi12i 627 . . . . 5 ((∃𝑥𝐿 𝑠 = (𝐹𝑥) ∧ ∃𝑥𝐿 𝑡 = (𝐹𝑥)) ↔ (∃𝑦𝐿 𝑠 = (𝐹𝑦) ∧ ∃𝑧𝐿 𝑡 = (𝐹𝑧)))
27 eqid 2740 . . . . . . . 8 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
2827elrnmpt 5981 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
2928elv 3493 . . . . . 6 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
3027elrnmpt 5981 . . . . . . 7 (𝑡 ∈ V → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
3130elv 3493 . . . . . 6 (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥))
3229, 31anbi12i 627 . . . . 5 ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (∃𝑥𝐿 𝑠 = (𝐹𝑥) ∧ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
33 reeanv 3235 . . . . 5 (∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) ↔ (∃𝑦𝐿 𝑠 = (𝐹𝑦) ∧ ∃𝑧𝐿 𝑡 = (𝐹𝑧)))
3426, 32, 333bitr4i 303 . . . 4 ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)))
35 vex 3492 . . . . . 6 𝑠 ∈ V
3635inex1 5335 . . . . 5 (𝑠𝑡) ∈ V
3727elrnmpt 5981 . . . . 5 ((𝑠𝑡) ∈ V → ((𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
3836, 37ax-mp 5 . . . 4 ((𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥))
3919, 34, 383imtr4g 296 . . 3 (𝜑 → ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → (𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
4039ralrimivv 3206 . 2 (𝜑 → ∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
41 mptexg 7258 . . 3 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
42 rnexg 7942 . . 3 ((𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
43 inficl 9494 . . 3 (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → (∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥))))
441, 41, 42, 434syl 19 . 2 (𝜑 → (∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥))))
4540, 44mpbid 232 1 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  cmpt 5249  ccnv 5699  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  ficfi 9479  fBascfbas 21375  Filcfil 23874   FilMap cfm 23962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-fbas 21384  df-fil 23875
This theorem is referenced by:  fmfnfmlem4  23986
  Copyright terms: Public domain W3C validator