MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem3 Structured version   Visualization version   GIF version

Theorem fmfnfmlem3 22671
Description: Lemma for fmfnfm 22673. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem3 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌

Proof of Theorem fmfnfmlem3
Dummy variables 𝑠 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . . . . . 8 (𝜑𝐿 ∈ (Fil‘𝑋))
2 filin 22569 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑦𝐿𝑧𝐿) → (𝑦𝑧) ∈ 𝐿)
323expb 1118 . . . . . . . 8 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑦𝐿𝑧𝐿)) → (𝑦𝑧) ∈ 𝐿)
41, 3sylan 583 . . . . . . 7 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → (𝑦𝑧) ∈ 𝐿)
5 fmfnfm.f . . . . . . . . 9 (𝜑𝐹:𝑌𝑋)
6 ffun 6507 . . . . . . . . 9 (𝐹:𝑌𝑋 → Fun 𝐹)
7 funcnvcnv 6408 . . . . . . . . 9 (Fun 𝐹 → Fun 𝐹)
8 imain 6426 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑦𝑧)) = ((𝐹𝑦) ∩ (𝐹𝑧)))
98eqcomd 2765 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
105, 6, 7, 94syl 19 . . . . . . . 8 (𝜑 → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
1110adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
12 imaeq2 5903 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝐹𝑥) = (𝐹 “ (𝑦𝑧)))
1312rspceeqv 3559 . . . . . . 7 (((𝑦𝑧) ∈ 𝐿 ∧ ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧))) → ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥))
144, 11, 13syl2anc 587 . . . . . 6 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥))
15 ineq12 4115 . . . . . . . 8 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → (𝑠𝑡) = ((𝐹𝑦) ∩ (𝐹𝑧)))
1615eqeq1d 2761 . . . . . . 7 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ((𝑠𝑡) = (𝐹𝑥) ↔ ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥)))
1716rexbidv 3222 . . . . . 6 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → (∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥) ↔ ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥)))
1814, 17syl5ibrcom 250 . . . . 5 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
1918rexlimdvva 3219 . . . 4 (𝜑 → (∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
20 imaeq2 5903 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
2120eqeq2d 2770 . . . . . . 7 (𝑥 = 𝑦 → (𝑠 = (𝐹𝑥) ↔ 𝑠 = (𝐹𝑦)))
2221cbvrexvw 3363 . . . . . 6 (∃𝑥𝐿 𝑠 = (𝐹𝑥) ↔ ∃𝑦𝐿 𝑠 = (𝐹𝑦))
23 imaeq2 5903 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2423eqeq2d 2770 . . . . . . 7 (𝑥 = 𝑧 → (𝑡 = (𝐹𝑥) ↔ 𝑡 = (𝐹𝑧)))
2524cbvrexvw 3363 . . . . . 6 (∃𝑥𝐿 𝑡 = (𝐹𝑥) ↔ ∃𝑧𝐿 𝑡 = (𝐹𝑧))
2622, 25anbi12i 629 . . . . 5 ((∃𝑥𝐿 𝑠 = (𝐹𝑥) ∧ ∃𝑥𝐿 𝑡 = (𝐹𝑥)) ↔ (∃𝑦𝐿 𝑠 = (𝐹𝑦) ∧ ∃𝑧𝐿 𝑡 = (𝐹𝑧)))
27 eqid 2759 . . . . . . . 8 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
2827elrnmpt 5803 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
2928elv 3416 . . . . . 6 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
3027elrnmpt 5803 . . . . . . 7 (𝑡 ∈ V → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
3130elv 3416 . . . . . 6 (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥))
3229, 31anbi12i 629 . . . . 5 ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (∃𝑥𝐿 𝑠 = (𝐹𝑥) ∧ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
33 reeanv 3286 . . . . 5 (∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) ↔ (∃𝑦𝐿 𝑠 = (𝐹𝑦) ∧ ∃𝑧𝐿 𝑡 = (𝐹𝑧)))
3426, 32, 333bitr4i 306 . . . 4 ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)))
35 vex 3414 . . . . . 6 𝑠 ∈ V
3635inex1 5192 . . . . 5 (𝑠𝑡) ∈ V
3727elrnmpt 5803 . . . . 5 ((𝑠𝑡) ∈ V → ((𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
3836, 37ax-mp 5 . . . 4 ((𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥))
3919, 34, 383imtr4g 299 . . 3 (𝜑 → ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → (𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
4039ralrimivv 3120 . 2 (𝜑 → ∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
41 mptexg 6982 . . 3 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
42 rnexg 7621 . . 3 ((𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
43 inficl 8936 . . 3 (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → (∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥))))
441, 41, 42, 434syl 19 . 2 (𝜑 → (∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥))))
4540, 44mpbid 235 1 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1539  wcel 2112  wral 3071  wrex 3072  Vcvv 3410  cin 3860  wss 3861  cmpt 5117  ccnv 5528  ran crn 5530  cima 5532  Fun wfun 6335  wf 6337  cfv 6341  (class class class)co 7157  ficfi 8921  fBascfbas 20169  Filcfil 22560   FilMap cfm 22648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-om 7587  df-1o 8119  df-er 8306  df-en 8542  df-fin 8545  df-fi 8922  df-fbas 20178  df-fil 22561
This theorem is referenced by:  fmfnfmlem4  22672
  Copyright terms: Public domain W3C validator