| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fmfnfm.l | . . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) | 
| 2 |  | filin 23862 | . . . . . . . . 9
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿) → (𝑦 ∩ 𝑧) ∈ 𝐿) | 
| 3 | 2 | 3expb 1121 | . . . . . . . 8
⊢ ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿)) → (𝑦 ∩ 𝑧) ∈ 𝐿) | 
| 4 | 1, 3 | sylan 580 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿)) → (𝑦 ∩ 𝑧) ∈ 𝐿) | 
| 5 |  | fmfnfm.f | . . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑌⟶𝑋) | 
| 6 |  | ffun 6739 | . . . . . . . . 9
⊢ (𝐹:𝑌⟶𝑋 → Fun 𝐹) | 
| 7 |  | funcnvcnv 6633 | . . . . . . . . 9
⊢ (Fun
𝐹 → Fun ◡◡𝐹) | 
| 8 |  | imain 6651 | . . . . . . . . . 10
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑦 ∩ 𝑧)) = ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧))) | 
| 9 | 8 | eqcomd 2743 | . . . . . . . . 9
⊢ (Fun
◡◡𝐹 → ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ (𝑦 ∩ 𝑧))) | 
| 10 | 5, 6, 7, 9 | 4syl 19 | . . . . . . . 8
⊢ (𝜑 → ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ (𝑦 ∩ 𝑧))) | 
| 11 | 10 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿)) → ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ (𝑦 ∩ 𝑧))) | 
| 12 |  | imaeq2 6074 | . . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (◡𝐹 “ 𝑥) = (◡𝐹 “ (𝑦 ∩ 𝑧))) | 
| 13 | 12 | rspceeqv 3645 | . . . . . . 7
⊢ (((𝑦 ∩ 𝑧) ∈ 𝐿 ∧ ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ (𝑦 ∩ 𝑧))) → ∃𝑥 ∈ 𝐿 ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ 𝑥)) | 
| 14 | 4, 11, 13 | syl2anc 584 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿)) → ∃𝑥 ∈ 𝐿 ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ 𝑥)) | 
| 15 |  | ineq12 4215 | . . . . . . . 8
⊢ ((𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) → (𝑠 ∩ 𝑡) = ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧))) | 
| 16 | 15 | eqeq1d 2739 | . . . . . . 7
⊢ ((𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) → ((𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥) ↔ ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ 𝑥))) | 
| 17 | 16 | rexbidv 3179 | . . . . . 6
⊢ ((𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) → (∃𝑥 ∈ 𝐿 (𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥) ↔ ∃𝑥 ∈ 𝐿 ((◡𝐹 “ 𝑦) ∩ (◡𝐹 “ 𝑧)) = (◡𝐹 “ 𝑥))) | 
| 18 | 14, 17 | syl5ibrcom 247 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿)) → ((𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) → ∃𝑥 ∈ 𝐿 (𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥))) | 
| 19 | 18 | rexlimdvva 3213 | . . . 4
⊢ (𝜑 → (∃𝑦 ∈ 𝐿 ∃𝑧 ∈ 𝐿 (𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) → ∃𝑥 ∈ 𝐿 (𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥))) | 
| 20 |  | imaeq2 6074 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑦)) | 
| 21 | 20 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑠 = (◡𝐹 “ 𝑥) ↔ 𝑠 = (◡𝐹 “ 𝑦))) | 
| 22 | 21 | cbvrexvw 3238 | . . . . . 6
⊢
(∃𝑥 ∈
𝐿 𝑠 = (◡𝐹 “ 𝑥) ↔ ∃𝑦 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑦)) | 
| 23 |  | imaeq2 6074 | . . . . . . . 8
⊢ (𝑥 = 𝑧 → (◡𝐹 “ 𝑥) = (◡𝐹 “ 𝑧)) | 
| 24 | 23 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑡 = (◡𝐹 “ 𝑥) ↔ 𝑡 = (◡𝐹 “ 𝑧))) | 
| 25 | 24 | cbvrexvw 3238 | . . . . . 6
⊢
(∃𝑥 ∈
𝐿 𝑡 = (◡𝐹 “ 𝑥) ↔ ∃𝑧 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑧)) | 
| 26 | 22, 25 | anbi12i 628 | . . . . 5
⊢
((∃𝑥 ∈
𝐿 𝑠 = (◡𝐹 “ 𝑥) ∧ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥)) ↔ (∃𝑦 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑦) ∧ ∃𝑧 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑧))) | 
| 27 |  | eqid 2737 | . . . . . . . 8
⊢ (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) = (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) | 
| 28 | 27 | elrnmpt 5969 | . . . . . . 7
⊢ (𝑠 ∈ V → (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥))) | 
| 29 | 28 | elv 3485 | . . . . . 6
⊢ (𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥)) | 
| 30 | 27 | elrnmpt 5969 | . . . . . . 7
⊢ (𝑡 ∈ V → (𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥))) | 
| 31 | 30 | elv 3485 | . . . . . 6
⊢ (𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥)) | 
| 32 | 29, 31 | anbi12i 628 | . . . . 5
⊢ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ (∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥) ∧ ∃𝑥 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑥))) | 
| 33 |  | reeanv 3229 | . . . . 5
⊢
(∃𝑦 ∈
𝐿 ∃𝑧 ∈ 𝐿 (𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧)) ↔ (∃𝑦 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑦) ∧ ∃𝑧 ∈ 𝐿 𝑡 = (◡𝐹 “ 𝑧))) | 
| 34 | 26, 32, 33 | 3bitr4i 303 | . . . 4
⊢ ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) ↔ ∃𝑦 ∈ 𝐿 ∃𝑧 ∈ 𝐿 (𝑠 = (◡𝐹 “ 𝑦) ∧ 𝑡 = (◡𝐹 “ 𝑧))) | 
| 35 |  | vex 3484 | . . . . . 6
⊢ 𝑠 ∈ V | 
| 36 | 35 | inex1 5317 | . . . . 5
⊢ (𝑠 ∩ 𝑡) ∈ V | 
| 37 | 27 | elrnmpt 5969 | . . . . 5
⊢ ((𝑠 ∩ 𝑡) ∈ V → ((𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥))) | 
| 38 | 36, 37 | ax-mp 5 | . . . 4
⊢ ((𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ ∃𝑥 ∈ 𝐿 (𝑠 ∩ 𝑡) = (◡𝐹 “ 𝑥)) | 
| 39 | 19, 34, 38 | 3imtr4g 296 | . . 3
⊢ (𝜑 → ((𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∧ 𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) → (𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) | 
| 40 | 39 | ralrimivv 3200 | . 2
⊢ (𝜑 → ∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) | 
| 41 |  | mptexg 7241 | . . 3
⊢ (𝐿 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V) | 
| 42 |  | rnexg 7924 | . . 3
⊢ ((𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V) | 
| 43 |  | inficl 9465 | . . 3
⊢ (ran
(𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ V → (∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) = ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) | 
| 44 | 1, 41, 42, 43 | 4syl 19 | . 2
⊢ (𝜑 → (∀𝑠 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))∀𝑡 ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))(𝑠 ∩ 𝑡) ∈ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ↔ (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) = ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)))) | 
| 45 | 40, 44 | mpbid 232 | 1
⊢ (𝜑 → (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) = ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) |