MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem3 Structured version   Visualization version   GIF version

Theorem fmfnfmlem3 23850
Description: Lemma for fmfnfm 23852. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem3 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌

Proof of Theorem fmfnfmlem3
Dummy variables 𝑠 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . . . . . 8 (𝜑𝐿 ∈ (Fil‘𝑋))
2 filin 23748 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑦𝐿𝑧𝐿) → (𝑦𝑧) ∈ 𝐿)
323expb 1120 . . . . . . . 8 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑦𝐿𝑧𝐿)) → (𝑦𝑧) ∈ 𝐿)
41, 3sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → (𝑦𝑧) ∈ 𝐿)
5 fmfnfm.f . . . . . . . . 9 (𝜑𝐹:𝑌𝑋)
6 ffun 6694 . . . . . . . . 9 (𝐹:𝑌𝑋 → Fun 𝐹)
7 funcnvcnv 6586 . . . . . . . . 9 (Fun 𝐹 → Fun 𝐹)
8 imain 6604 . . . . . . . . . 10 (Fun 𝐹 → (𝐹 “ (𝑦𝑧)) = ((𝐹𝑦) ∩ (𝐹𝑧)))
98eqcomd 2736 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
105, 6, 7, 94syl 19 . . . . . . . 8 (𝜑 → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
1110adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧)))
12 imaeq2 6030 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝐹𝑥) = (𝐹 “ (𝑦𝑧)))
1312rspceeqv 3614 . . . . . . 7 (((𝑦𝑧) ∈ 𝐿 ∧ ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹 “ (𝑦𝑧))) → ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥))
144, 11, 13syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥))
15 ineq12 4181 . . . . . . . 8 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → (𝑠𝑡) = ((𝐹𝑦) ∩ (𝐹𝑧)))
1615eqeq1d 2732 . . . . . . 7 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ((𝑠𝑡) = (𝐹𝑥) ↔ ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥)))
1716rexbidv 3158 . . . . . 6 ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → (∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥) ↔ ∃𝑥𝐿 ((𝐹𝑦) ∩ (𝐹𝑧)) = (𝐹𝑥)))
1814, 17syl5ibrcom 247 . . . . 5 ((𝜑 ∧ (𝑦𝐿𝑧𝐿)) → ((𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
1918rexlimdvva 3195 . . . 4 (𝜑 → (∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) → ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
20 imaeq2 6030 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
2120eqeq2d 2741 . . . . . . 7 (𝑥 = 𝑦 → (𝑠 = (𝐹𝑥) ↔ 𝑠 = (𝐹𝑦)))
2221cbvrexvw 3217 . . . . . 6 (∃𝑥𝐿 𝑠 = (𝐹𝑥) ↔ ∃𝑦𝐿 𝑠 = (𝐹𝑦))
23 imaeq2 6030 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2423eqeq2d 2741 . . . . . . 7 (𝑥 = 𝑧 → (𝑡 = (𝐹𝑥) ↔ 𝑡 = (𝐹𝑧)))
2524cbvrexvw 3217 . . . . . 6 (∃𝑥𝐿 𝑡 = (𝐹𝑥) ↔ ∃𝑧𝐿 𝑡 = (𝐹𝑧))
2622, 25anbi12i 628 . . . . 5 ((∃𝑥𝐿 𝑠 = (𝐹𝑥) ∧ ∃𝑥𝐿 𝑡 = (𝐹𝑥)) ↔ (∃𝑦𝐿 𝑠 = (𝐹𝑦) ∧ ∃𝑧𝐿 𝑡 = (𝐹𝑧)))
27 eqid 2730 . . . . . . . 8 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
2827elrnmpt 5925 . . . . . . 7 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
2928elv 3455 . . . . . 6 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
3027elrnmpt 5925 . . . . . . 7 (𝑡 ∈ V → (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
3130elv 3455 . . . . . 6 (𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑡 = (𝐹𝑥))
3229, 31anbi12i 628 . . . . 5 ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (∃𝑥𝐿 𝑠 = (𝐹𝑥) ∧ ∃𝑥𝐿 𝑡 = (𝐹𝑥)))
33 reeanv 3210 . . . . 5 (∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)) ↔ (∃𝑦𝐿 𝑠 = (𝐹𝑦) ∧ ∃𝑧𝐿 𝑡 = (𝐹𝑧)))
3426, 32, 333bitr4i 303 . . . 4 ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑦𝐿𝑧𝐿 (𝑠 = (𝐹𝑦) ∧ 𝑡 = (𝐹𝑧)))
35 vex 3454 . . . . . 6 𝑠 ∈ V
3635inex1 5275 . . . . 5 (𝑠𝑡) ∈ V
3727elrnmpt 5925 . . . . 5 ((𝑠𝑡) ∈ V → ((𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥)))
3836, 37ax-mp 5 . . . 4 ((𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝑠𝑡) = (𝐹𝑥))
3919, 34, 383imtr4g 296 . . 3 (𝜑 → ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → (𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
4039ralrimivv 3179 . 2 (𝜑 → ∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
41 mptexg 7198 . . 3 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
42 rnexg 7881 . . 3 ((𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
43 inficl 9383 . . 3 (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → (∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥))))
441, 41, 42, 434syl 19 . 2 (𝜑 → (∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝑠𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥))))
4540, 44mpbid 232 1 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  cmpt 5191  ccnv 5640  ran crn 5642  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  ficfi 9368  fBascfbas 21259  Filcfil 23739   FilMap cfm 23827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-en 8922  df-fin 8925  df-fi 9369  df-fbas 21268  df-fil 23740
This theorem is referenced by:  fmfnfmlem4  23851
  Copyright terms: Public domain W3C validator