![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf5 | Structured version Visualization version GIF version |
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see Theorem infeq5 9681). This provides us with a very compact way to express the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.) |
Ref | Expression |
---|---|
inf5 | ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9687 | . 2 ⊢ ω ∈ V | |
2 | infeq5i 9680 | . 2 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1777 ∈ wcel 2107 Vcvv 3479 ⊊ wpss 3965 ∪ cuni 4913 ωcom 7891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 ax-inf2 9685 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-om 7892 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |