Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inf5 | Structured version Visualization version GIF version |
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see Theorem infeq5 9373). This provides us with a very compact way to express the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.) |
Ref | Expression |
---|---|
inf5 | ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9379 | . 2 ⊢ ω ∈ V | |
2 | infeq5i 9372 | . 2 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1786 ∈ wcel 2110 Vcvv 3431 ⊊ wpss 3893 ∪ cuni 4845 ωcom 7706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 ax-inf2 9377 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-om 7707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |