| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf5 | Structured version Visualization version GIF version | ||
| Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see Theorem infeq5 9608). This provides us with a very compact way to express the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.) |
| Ref | Expression |
|---|---|
| inf5 | ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9614 | . 2 ⊢ ω ∈ V | |
| 2 | infeq5i 9607 | . 2 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 ∈ wcel 2109 Vcvv 3455 ⊊ wpss 3923 ∪ cuni 4879 ωcom 7850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 ax-inf2 9612 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-tr 5223 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-om 7851 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |