| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf5 | Structured version Visualization version GIF version | ||
| Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see Theorem infeq5 9534). This provides us with a very compact way to express the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.) |
| Ref | Expression |
|---|---|
| inf5 | ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9540 | . 2 ⊢ ω ∈ V | |
| 2 | infeq5i 9533 | . 2 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 ∈ wcel 2113 Vcvv 3437 ⊊ wpss 3899 ∪ cuni 4858 ωcom 7802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7803 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |