Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inf5 | Structured version Visualization version GIF version |
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see Theorem infeq5 9325). This provides us with a very compact way to express the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.) |
Ref | Expression |
---|---|
inf5 | ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9331 | . 2 ⊢ ω ∈ V | |
2 | infeq5i 9324 | . 2 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1783 ∈ wcel 2108 Vcvv 3422 ⊊ wpss 3884 ∪ cuni 4836 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |