| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version | ||
| Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon | ⊢ ω ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9657 | . 2 ⊢ ω ∈ V | |
| 2 | omelon2 7874 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 Oncon0 6352 ωcom 7861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-om 7862 |
| This theorem is referenced by: oancom 9665 cnfcomlem 9713 cnfcom 9714 cnfcom2lem 9715 cnfcom2 9716 cnfcom3lem 9717 cnfcom3 9718 cnfcom3clem 9719 cardom 10000 infxpenlem 10027 xpomen 10029 infxpidm2 10031 infxpenc 10032 infxpenc2lem1 10033 infxpenc2 10036 alephon 10083 infenaleph 10105 iunfictbso 10128 dfac12k 10162 infunsdom1 10226 domtriomlem 10456 iunctb 10588 pwcfsdom 10597 canthp1lem2 10667 pwfseqlem4a 10675 pwfseqlem4 10676 pwfseqlem5 10677 wunex3 10755 znnen 16230 qnnen 16231 cygctb 19873 2ndcctbss 23393 2ndcomap 23396 2ndcsep 23397 tx1stc 23588 tx2ndc 23589 met1stc 24460 met2ndci 24461 re2ndc 24740 uniiccdif 25531 dyadmbl 25553 opnmblALT 25556 mbfimaopnlem 25608 aannenlem3 26290 n0ssold 28297 exrecfnlem 37397 poimirlem32 37676 numinfctb 43127 onexomgt 43265 onexlimgt 43267 onexoegt 43268 1oaomeqom 43317 oaabsb 43318 oaordnrex 43319 oaordnr 43320 2omomeqom 43327 omnord1ex 43328 omnord1 43329 nnoeomeqom 43336 oenord1 43340 oaomoencom 43341 cantnftermord 43344 cantnfub 43345 cantnf2 43349 nnawordexg 43351 dflim5 43353 oacl2g 43354 onmcl 43355 omabs2 43356 omcl2 43357 tfsnfin 43376 ofoaf 43379 ofoafo 43380 naddcnff 43386 naddcnffo 43388 naddcnfcom 43390 naddcnfid1 43391 naddcnfid2 43392 naddcnfass 43393 naddwordnexlem0 43420 naddwordnexlem1 43421 naddwordnexlem3 43423 oawordex3 43424 naddwordnexlem4 43425 infordmin 43556 minregex 43558 omiscard 43567 sucomisnotcard 43568 aleph1min 43581 alephiso3 43583 wfaxinf2 45026 |
| Copyright terms: Public domain | W3C validator |