Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon | ⊢ ω ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9331 | . 2 ⊢ ω ∈ V | |
2 | omelon2 7700 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 Oncon0 6251 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: oancom 9339 cnfcomlem 9387 cnfcom 9388 cnfcom2lem 9389 cnfcom2 9390 cnfcom3lem 9391 cnfcom3 9392 cnfcom3clem 9393 cardom 9675 infxpenlem 9700 xpomen 9702 infxpidm2 9704 infxpenc 9705 infxpenc2lem1 9706 infxpenc2 9709 alephon 9756 infenaleph 9778 iunfictbso 9801 dfac12k 9834 infunsdom1 9900 domtriomlem 10129 iunctb 10261 pwcfsdom 10270 canthp1lem2 10340 pwfseqlem4a 10348 pwfseqlem4 10349 pwfseqlem5 10350 wunex3 10428 znnen 15849 qnnen 15850 cygctb 19408 2ndcctbss 22514 2ndcomap 22517 2ndcsep 22518 tx1stc 22709 tx2ndc 22710 met1stc 23583 met2ndci 23584 re2ndc 23870 uniiccdif 24647 dyadmbl 24669 opnmblALT 24672 mbfimaopnlem 24724 aannenlem3 25395 exrecfnlem 35477 poimirlem32 35736 numinfctb 40844 infordmin 41037 aleph1min 41053 alephiso3 41055 |
Copyright terms: Public domain | W3C validator |