| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version | ||
| Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon | ⊢ ω ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9596 | . 2 ⊢ ω ∈ V | |
| 2 | omelon2 7855 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 Oncon0 6332 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-om 7843 |
| This theorem is referenced by: oancom 9604 cnfcomlem 9652 cnfcom 9653 cnfcom2lem 9654 cnfcom2 9655 cnfcom3lem 9656 cnfcom3 9657 cnfcom3clem 9658 cardom 9939 infxpenlem 9966 xpomen 9968 infxpidm2 9970 infxpenc 9971 infxpenc2lem1 9972 infxpenc2 9975 alephon 10022 infenaleph 10044 iunfictbso 10067 dfac12k 10101 infunsdom1 10165 domtriomlem 10395 iunctb 10527 pwcfsdom 10536 canthp1lem2 10606 pwfseqlem4a 10614 pwfseqlem4 10615 pwfseqlem5 10616 wunex3 10694 znnen 16180 qnnen 16181 cygctb 19822 2ndcctbss 23342 2ndcomap 23345 2ndcsep 23346 tx1stc 23537 tx2ndc 23538 met1stc 24409 met2ndci 24410 re2ndc 24689 uniiccdif 25479 dyadmbl 25501 opnmblALT 25504 mbfimaopnlem 25556 aannenlem3 26238 n0ssold 28245 exrecfnlem 37367 poimirlem32 37646 numinfctb 43092 onexomgt 43230 onexlimgt 43232 onexoegt 43233 1oaomeqom 43282 oaabsb 43283 oaordnrex 43284 oaordnr 43285 2omomeqom 43292 omnord1ex 43293 omnord1 43294 nnoeomeqom 43301 oenord1 43305 oaomoencom 43306 cantnftermord 43309 cantnfub 43310 cantnf2 43314 nnawordexg 43316 dflim5 43318 oacl2g 43319 onmcl 43320 omabs2 43321 omcl2 43322 tfsnfin 43341 ofoaf 43344 ofoafo 43345 naddcnff 43351 naddcnffo 43353 naddcnfcom 43355 naddcnfid1 43356 naddcnfid2 43357 naddcnfass 43358 naddwordnexlem0 43385 naddwordnexlem1 43386 naddwordnexlem3 43388 oawordex3 43389 naddwordnexlem4 43390 infordmin 43521 minregex 43523 omiscard 43532 sucomisnotcard 43533 aleph1min 43546 alephiso3 43548 wfaxinf2 44991 |
| Copyright terms: Public domain | W3C validator |