![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon | ⊢ ω ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9658 | . 2 ⊢ ω ∈ V | |
2 | omelon2 7877 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 Vcvv 3469 Oncon0 6363 ωcom 7864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 ax-inf2 9656 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-tr 5260 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-om 7865 |
This theorem is referenced by: oancom 9666 cnfcomlem 9714 cnfcom 9715 cnfcom2lem 9716 cnfcom2 9717 cnfcom3lem 9718 cnfcom3 9719 cnfcom3clem 9720 cardom 10001 infxpenlem 10028 xpomen 10030 infxpidm2 10032 infxpenc 10033 infxpenc2lem1 10034 infxpenc2 10037 alephon 10084 infenaleph 10106 iunfictbso 10129 dfac12k 10162 infunsdom1 10228 domtriomlem 10457 iunctb 10589 pwcfsdom 10598 canthp1lem2 10668 pwfseqlem4a 10676 pwfseqlem4 10677 pwfseqlem5 10678 wunex3 10756 znnen 16180 qnnen 16181 cygctb 19838 2ndcctbss 23346 2ndcomap 23349 2ndcsep 23350 tx1stc 23541 tx2ndc 23542 met1stc 24417 met2ndci 24418 re2ndc 24704 uniiccdif 25494 dyadmbl 25516 opnmblALT 25519 mbfimaopnlem 25571 aannenlem3 26252 n0ssold 28205 exrecfnlem 36794 poimirlem32 37060 numinfctb 42449 onexomgt 42592 onexlimgt 42594 onexoegt 42595 1oaomeqom 42645 oaabsb 42646 oaordnrex 42647 oaordnr 42648 2omomeqom 42655 omnord1ex 42656 omnord1 42657 nnoeomeqom 42664 oenord1 42668 oaomoencom 42669 cantnftermord 42672 cantnfub 42673 cantnf2 42677 nnawordexg 42679 dflim5 42681 oacl2g 42682 onmcl 42683 omabs2 42684 omcl2 42685 tfsnfin 42704 ofoaf 42707 ofoafo 42708 naddcnff 42714 naddcnffo 42716 naddcnfcom 42718 naddcnfid1 42719 naddcnfid2 42720 naddcnfass 42721 naddwordnexlem0 42749 naddwordnexlem1 42750 naddwordnexlem3 42752 oawordex3 42753 naddwordnexlem4 42754 infordmin 42885 minregex 42887 omiscard 42896 sucomisnotcard 42897 aleph1min 42910 alephiso3 42912 |
Copyright terms: Public domain | W3C validator |