![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon | ⊢ ω ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9712 | . 2 ⊢ ω ∈ V | |
2 | omelon2 7916 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 Oncon0 6395 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-om 7904 |
This theorem is referenced by: oancom 9720 cnfcomlem 9768 cnfcom 9769 cnfcom2lem 9770 cnfcom2 9771 cnfcom3lem 9772 cnfcom3 9773 cnfcom3clem 9774 cardom 10055 infxpenlem 10082 xpomen 10084 infxpidm2 10086 infxpenc 10087 infxpenc2lem1 10088 infxpenc2 10091 alephon 10138 infenaleph 10160 iunfictbso 10183 dfac12k 10217 infunsdom1 10281 domtriomlem 10511 iunctb 10643 pwcfsdom 10652 canthp1lem2 10722 pwfseqlem4a 10730 pwfseqlem4 10731 pwfseqlem5 10732 wunex3 10810 znnen 16260 qnnen 16261 cygctb 19934 2ndcctbss 23484 2ndcomap 23487 2ndcsep 23488 tx1stc 23679 tx2ndc 23680 met1stc 24555 met2ndci 24556 re2ndc 24842 uniiccdif 25632 dyadmbl 25654 opnmblALT 25657 mbfimaopnlem 25709 aannenlem3 26390 n0ssold 28373 exrecfnlem 37345 poimirlem32 37612 numinfctb 43060 onexomgt 43202 onexlimgt 43204 onexoegt 43205 1oaomeqom 43255 oaabsb 43256 oaordnrex 43257 oaordnr 43258 2omomeqom 43265 omnord1ex 43266 omnord1 43267 nnoeomeqom 43274 oenord1 43278 oaomoencom 43279 cantnftermord 43282 cantnfub 43283 cantnf2 43287 nnawordexg 43289 dflim5 43291 oacl2g 43292 onmcl 43293 omabs2 43294 omcl2 43295 tfsnfin 43314 ofoaf 43317 ofoafo 43318 naddcnff 43324 naddcnffo 43326 naddcnfcom 43328 naddcnfid1 43329 naddcnfid2 43330 naddcnfass 43331 naddwordnexlem0 43358 naddwordnexlem1 43359 naddwordnexlem3 43361 oawordex3 43362 naddwordnexlem4 43363 infordmin 43494 minregex 43496 omiscard 43505 sucomisnotcard 43506 aleph1min 43519 alephiso3 43521 |
Copyright terms: Public domain | W3C validator |