| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version | ||
| Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon | ⊢ ω ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9539 | . 2 ⊢ ω ∈ V | |
| 2 | omelon2 7815 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 Oncon0 6312 ωcom 7802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-om 7803 |
| This theorem is referenced by: oancom 9547 cnfcomlem 9595 cnfcom 9596 cnfcom2lem 9597 cnfcom2 9598 cnfcom3lem 9599 cnfcom3 9600 cnfcom3clem 9601 cardom 9885 infxpenlem 9910 xpomen 9912 infxpidm2 9914 infxpenc 9915 infxpenc2lem1 9916 infxpenc2 9919 alephon 9966 infenaleph 9988 iunfictbso 10011 dfac12k 10045 infunsdom1 10109 domtriomlem 10339 iunctb 10471 pwcfsdom 10480 canthp1lem2 10550 pwfseqlem4a 10558 pwfseqlem4 10559 pwfseqlem5 10560 wunex3 10638 znnen 16127 qnnen 16128 cygctb 19810 2ndcctbss 23376 2ndcomap 23379 2ndcsep 23380 tx1stc 23571 tx2ndc 23572 met1stc 24442 met2ndci 24443 re2ndc 24722 uniiccdif 25512 dyadmbl 25534 opnmblALT 25537 mbfimaopnlem 25589 aannenlem3 26271 n0ssold 28287 exrecfnlem 37430 poimirlem32 37698 numinfctb 43201 onexomgt 43339 onexlimgt 43341 onexoegt 43342 1oaomeqom 43391 oaabsb 43392 oaordnrex 43393 oaordnr 43394 2omomeqom 43401 omnord1ex 43402 omnord1 43403 nnoeomeqom 43410 oenord1 43414 oaomoencom 43415 cantnftermord 43418 cantnfub 43419 cantnf2 43423 nnawordexg 43425 dflim5 43427 oacl2g 43428 onmcl 43429 omabs2 43430 omcl2 43431 tfsnfin 43450 ofoaf 43453 ofoafo 43454 naddcnff 43460 naddcnffo 43462 naddcnfcom 43464 naddcnfid1 43465 naddcnfid2 43466 naddcnfass 43467 naddwordnexlem0 43494 naddwordnexlem1 43495 naddwordnexlem3 43497 oawordex3 43498 naddwordnexlem4 43499 infordmin 43630 minregex 43632 omiscard 43641 sucomisnotcard 43642 aleph1min 43655 alephiso3 43657 wfaxinf2 45099 |
| Copyright terms: Public domain | W3C validator |