| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version | ||
| Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon | ⊢ ω ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9558 | . 2 ⊢ ω ∈ V | |
| 2 | omelon2 7819 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 Oncon0 6311 ωcom 7806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7807 |
| This theorem is referenced by: oancom 9566 cnfcomlem 9614 cnfcom 9615 cnfcom2lem 9616 cnfcom2 9617 cnfcom3lem 9618 cnfcom3 9619 cnfcom3clem 9620 cardom 9901 infxpenlem 9926 xpomen 9928 infxpidm2 9930 infxpenc 9931 infxpenc2lem1 9932 infxpenc2 9935 alephon 9982 infenaleph 10004 iunfictbso 10027 dfac12k 10061 infunsdom1 10125 domtriomlem 10355 iunctb 10487 pwcfsdom 10496 canthp1lem2 10566 pwfseqlem4a 10574 pwfseqlem4 10575 pwfseqlem5 10576 wunex3 10654 znnen 16139 qnnen 16140 cygctb 19789 2ndcctbss 23358 2ndcomap 23361 2ndcsep 23362 tx1stc 23553 tx2ndc 23554 met1stc 24425 met2ndci 24426 re2ndc 24705 uniiccdif 25495 dyadmbl 25517 opnmblALT 25520 mbfimaopnlem 25572 aannenlem3 26254 n0ssold 28268 exrecfnlem 37352 poimirlem32 37631 numinfctb 43076 onexomgt 43214 onexlimgt 43216 onexoegt 43217 1oaomeqom 43266 oaabsb 43267 oaordnrex 43268 oaordnr 43269 2omomeqom 43276 omnord1ex 43277 omnord1 43278 nnoeomeqom 43285 oenord1 43289 oaomoencom 43290 cantnftermord 43293 cantnfub 43294 cantnf2 43298 nnawordexg 43300 dflim5 43302 oacl2g 43303 onmcl 43304 omabs2 43305 omcl2 43306 tfsnfin 43325 ofoaf 43328 ofoafo 43329 naddcnff 43335 naddcnffo 43337 naddcnfcom 43339 naddcnfid1 43340 naddcnfid2 43341 naddcnfass 43342 naddwordnexlem0 43369 naddwordnexlem1 43370 naddwordnexlem3 43372 oawordex3 43373 naddwordnexlem4 43374 infordmin 43505 minregex 43507 omiscard 43516 sucomisnotcard 43517 aleph1min 43530 alephiso3 43532 wfaxinf2 44975 |
| Copyright terms: Public domain | W3C validator |