![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon | ⊢ ω ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9666 | . 2 ⊢ ω ∈ V | |
2 | omelon2 7882 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3463 Oncon0 6369 ωcom 7869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 ax-un 7739 ax-inf2 9664 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-om 7870 |
This theorem is referenced by: oancom 9674 cnfcomlem 9722 cnfcom 9723 cnfcom2lem 9724 cnfcom2 9725 cnfcom3lem 9726 cnfcom3 9727 cnfcom3clem 9728 cardom 10009 infxpenlem 10036 xpomen 10038 infxpidm2 10040 infxpenc 10041 infxpenc2lem1 10042 infxpenc2 10045 alephon 10092 infenaleph 10114 iunfictbso 10137 dfac12k 10170 infunsdom1 10236 domtriomlem 10465 iunctb 10597 pwcfsdom 10606 canthp1lem2 10676 pwfseqlem4a 10684 pwfseqlem4 10685 pwfseqlem5 10686 wunex3 10764 znnen 16188 qnnen 16189 cygctb 19851 2ndcctbss 23389 2ndcomap 23392 2ndcsep 23393 tx1stc 23584 tx2ndc 23585 met1stc 24460 met2ndci 24461 re2ndc 24747 uniiccdif 25537 dyadmbl 25559 opnmblALT 25562 mbfimaopnlem 25614 aannenlem3 26295 n0ssold 28254 exrecfnlem 36928 poimirlem32 37195 numinfctb 42592 onexomgt 42734 onexlimgt 42736 onexoegt 42737 1oaomeqom 42787 oaabsb 42788 oaordnrex 42789 oaordnr 42790 2omomeqom 42797 omnord1ex 42798 omnord1 42799 nnoeomeqom 42806 oenord1 42810 oaomoencom 42811 cantnftermord 42814 cantnfub 42815 cantnf2 42819 nnawordexg 42821 dflim5 42823 oacl2g 42824 onmcl 42825 omabs2 42826 omcl2 42827 tfsnfin 42846 ofoaf 42849 ofoafo 42850 naddcnff 42856 naddcnffo 42858 naddcnfcom 42860 naddcnfid1 42861 naddcnfid2 42862 naddcnfass 42863 naddwordnexlem0 42891 naddwordnexlem1 42892 naddwordnexlem3 42894 oawordex3 42895 naddwordnexlem4 42896 infordmin 43027 minregex 43029 omiscard 43038 sucomisnotcard 43039 aleph1min 43052 alephiso3 43054 |
Copyright terms: Public domain | W3C validator |