![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon | ⊢ ω ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9681 | . 2 ⊢ ω ∈ V | |
2 | omelon2 7900 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 Oncon0 6386 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-om 7888 |
This theorem is referenced by: oancom 9689 cnfcomlem 9737 cnfcom 9738 cnfcom2lem 9739 cnfcom2 9740 cnfcom3lem 9741 cnfcom3 9742 cnfcom3clem 9743 cardom 10024 infxpenlem 10051 xpomen 10053 infxpidm2 10055 infxpenc 10056 infxpenc2lem1 10057 infxpenc2 10060 alephon 10107 infenaleph 10129 iunfictbso 10152 dfac12k 10186 infunsdom1 10250 domtriomlem 10480 iunctb 10612 pwcfsdom 10621 canthp1lem2 10691 pwfseqlem4a 10699 pwfseqlem4 10700 pwfseqlem5 10701 wunex3 10779 znnen 16245 qnnen 16246 cygctb 19925 2ndcctbss 23479 2ndcomap 23482 2ndcsep 23483 tx1stc 23674 tx2ndc 23675 met1stc 24550 met2ndci 24551 re2ndc 24837 uniiccdif 25627 dyadmbl 25649 opnmblALT 25652 mbfimaopnlem 25704 aannenlem3 26387 n0ssold 28370 exrecfnlem 37362 poimirlem32 37639 numinfctb 43092 onexomgt 43230 onexlimgt 43232 onexoegt 43233 1oaomeqom 43283 oaabsb 43284 oaordnrex 43285 oaordnr 43286 2omomeqom 43293 omnord1ex 43294 omnord1 43295 nnoeomeqom 43302 oenord1 43306 oaomoencom 43307 cantnftermord 43310 cantnfub 43311 cantnf2 43315 nnawordexg 43317 dflim5 43319 oacl2g 43320 onmcl 43321 omabs2 43322 omcl2 43323 tfsnfin 43342 ofoaf 43345 ofoafo 43346 naddcnff 43352 naddcnffo 43354 naddcnfcom 43356 naddcnfid1 43357 naddcnfid2 43358 naddcnfass 43359 naddwordnexlem0 43386 naddwordnexlem1 43387 naddwordnexlem3 43389 oawordex3 43390 naddwordnexlem4 43391 infordmin 43522 minregex 43524 omiscard 43533 sucomisnotcard 43534 aleph1min 43547 alephiso3 43549 |
Copyright terms: Public domain | W3C validator |