![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon | ⊢ ω ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 8837 | . 2 ⊢ ω ∈ V | |
2 | omelon2 7355 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3398 Oncon0 5976 ωcom 7343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-tr 4988 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-om 7344 |
This theorem is referenced by: oancom 8845 cnfcomlem 8893 cnfcom 8894 cnfcom2lem 8895 cnfcom2 8896 cnfcom3lem 8897 cnfcom3 8898 cnfcom3clem 8899 cardom 9145 infxpenlem 9169 xpomen 9171 infxpidm2 9173 infxpenc 9174 infxpenc2lem1 9175 infxpenc2 9178 alephon 9225 infenaleph 9247 iunfictbso 9270 dfac12k 9304 infunsdom1 9370 domtriomlem 9599 iunctb 9731 pwcfsdom 9740 canthp1lem2 9810 pwfseqlem4a 9818 pwfseqlem4 9819 pwfseqlem5 9820 wunex3 9898 znnen 15345 qnnen 15346 cygctb 18679 2ndcctbss 21667 2ndcomap 21670 2ndcsep 21671 tx1stc 21862 tx2ndc 21863 met1stc 22734 met2ndci 22735 re2ndc 23012 uniiccdif 23782 dyadmbl 23804 opnmblALT 23807 mbfimaopnlem 23859 aannenlem3 24522 poimirlem32 34069 numinfctb 38636 |
Copyright terms: Public domain | W3C validator |