Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon | ⊢ ω ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9492 | . 2 ⊢ ω ∈ V | |
2 | omelon2 7785 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 Oncon0 6296 ωcom 7772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 ax-inf2 9490 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-tr 5207 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-om 7773 |
This theorem is referenced by: oancom 9500 cnfcomlem 9548 cnfcom 9549 cnfcom2lem 9550 cnfcom2 9551 cnfcom3lem 9552 cnfcom3 9553 cnfcom3clem 9554 cardom 9835 infxpenlem 9862 xpomen 9864 infxpidm2 9866 infxpenc 9867 infxpenc2lem1 9868 infxpenc2 9871 alephon 9918 infenaleph 9940 iunfictbso 9963 dfac12k 9996 infunsdom1 10062 domtriomlem 10291 iunctb 10423 pwcfsdom 10432 canthp1lem2 10502 pwfseqlem4a 10510 pwfseqlem4 10511 pwfseqlem5 10512 wunex3 10590 znnen 16012 qnnen 16013 cygctb 19580 2ndcctbss 22704 2ndcomap 22707 2ndcsep 22708 tx1stc 22899 tx2ndc 22900 met1stc 23775 met2ndci 23776 re2ndc 24062 uniiccdif 24840 dyadmbl 24862 opnmblALT 24865 mbfimaopnlem 24917 aannenlem3 25588 exrecfnlem 35648 poimirlem32 35907 numinfctb 41179 nnawordexg 41301 dflim5 41303 oacl2g 41304 omabs2 41305 omcl2 41306 ofoaf 41309 ofoafo 41310 naddcnff 41316 naddcnffo 41318 naddcnfcom 41320 naddcnfid1 41321 naddcnfid2 41322 naddcnfass 41323 infordmin 41449 minregex 41451 omiscard 41460 sucomisnotcard 41461 aleph1min 41474 alephiso3 41476 |
Copyright terms: Public domain | W3C validator |