Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon | ⊢ ω ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9401 | . 2 ⊢ ω ∈ V | |
2 | omelon2 7725 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 Oncon0 6266 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-om 7713 |
This theorem is referenced by: oancom 9409 cnfcomlem 9457 cnfcom 9458 cnfcom2lem 9459 cnfcom2 9460 cnfcom3lem 9461 cnfcom3 9462 cnfcom3clem 9463 cardom 9744 infxpenlem 9769 xpomen 9771 infxpidm2 9773 infxpenc 9774 infxpenc2lem1 9775 infxpenc2 9778 alephon 9825 infenaleph 9847 iunfictbso 9870 dfac12k 9903 infunsdom1 9969 domtriomlem 10198 iunctb 10330 pwcfsdom 10339 canthp1lem2 10409 pwfseqlem4a 10417 pwfseqlem4 10418 pwfseqlem5 10419 wunex3 10497 znnen 15921 qnnen 15922 cygctb 19493 2ndcctbss 22606 2ndcomap 22609 2ndcsep 22610 tx1stc 22801 tx2ndc 22802 met1stc 23677 met2ndci 23678 re2ndc 23964 uniiccdif 24742 dyadmbl 24764 opnmblALT 24767 mbfimaopnlem 24819 aannenlem3 25490 exrecfnlem 35550 poimirlem32 35809 numinfctb 40928 infordmin 41139 minregex 41141 omiscard 41150 sucomisnotcard 41151 aleph1min 41164 alephiso3 41166 |
Copyright terms: Public domain | W3C validator |