![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version |
Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
Ref | Expression |
---|---|
omelon | ⊢ ω ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9637 | . 2 ⊢ ω ∈ V | |
2 | omelon2 7867 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 Oncon0 6364 ωcom 7854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-om 7855 |
This theorem is referenced by: oancom 9645 cnfcomlem 9693 cnfcom 9694 cnfcom2lem 9695 cnfcom2 9696 cnfcom3lem 9697 cnfcom3 9698 cnfcom3clem 9699 cardom 9980 infxpenlem 10007 xpomen 10009 infxpidm2 10011 infxpenc 10012 infxpenc2lem1 10013 infxpenc2 10016 alephon 10063 infenaleph 10085 iunfictbso 10108 dfac12k 10141 infunsdom1 10207 domtriomlem 10436 iunctb 10568 pwcfsdom 10577 canthp1lem2 10647 pwfseqlem4a 10655 pwfseqlem4 10656 pwfseqlem5 10657 wunex3 10735 znnen 16154 qnnen 16155 cygctb 19759 2ndcctbss 22958 2ndcomap 22961 2ndcsep 22962 tx1stc 23153 tx2ndc 23154 met1stc 24029 met2ndci 24030 re2ndc 24316 uniiccdif 25094 dyadmbl 25116 opnmblALT 25119 mbfimaopnlem 25171 aannenlem3 25842 exrecfnlem 36255 poimirlem32 36515 numinfctb 41835 onexomgt 41980 onexlimgt 41982 onexoegt 41983 1oaomeqom 42033 oaabsb 42034 oaordnrex 42035 oaordnr 42036 2omomeqom 42043 omnord1ex 42044 omnord1 42045 nnoeomeqom 42052 oenord1 42056 oaomoencom 42057 cantnftermord 42060 cantnfub 42061 cantnf2 42065 nnawordexg 42067 dflim5 42069 oacl2g 42070 onmcl 42071 omabs2 42072 omcl2 42073 tfsnfin 42092 ofoaf 42095 ofoafo 42096 naddcnff 42102 naddcnffo 42104 naddcnfcom 42106 naddcnfid1 42107 naddcnfid2 42108 naddcnfass 42109 naddwordnexlem0 42137 naddwordnexlem1 42138 naddwordnexlem3 42140 oawordex3 42141 naddwordnexlem4 42142 infordmin 42273 minregex 42275 omiscard 42284 sucomisnotcard 42285 aleph1min 42298 alephiso3 42300 |
Copyright terms: Public domain | W3C validator |