| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version | ||
| Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon | ⊢ ω ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9602 | . 2 ⊢ ω ∈ V | |
| 2 | omelon2 7857 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 Oncon0 6334 ωcom 7844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-inf2 9600 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-tr 5217 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-om 7845 |
| This theorem is referenced by: oancom 9610 cnfcomlem 9658 cnfcom 9659 cnfcom2lem 9660 cnfcom2 9661 cnfcom3lem 9662 cnfcom3 9663 cnfcom3clem 9664 cardom 9945 infxpenlem 9972 xpomen 9974 infxpidm2 9976 infxpenc 9977 infxpenc2lem1 9978 infxpenc2 9981 alephon 10028 infenaleph 10050 iunfictbso 10073 dfac12k 10107 infunsdom1 10171 domtriomlem 10401 iunctb 10533 pwcfsdom 10542 canthp1lem2 10612 pwfseqlem4a 10620 pwfseqlem4 10621 pwfseqlem5 10622 wunex3 10700 znnen 16186 qnnen 16187 cygctb 19828 2ndcctbss 23348 2ndcomap 23351 2ndcsep 23352 tx1stc 23543 tx2ndc 23544 met1stc 24415 met2ndci 24416 re2ndc 24695 uniiccdif 25485 dyadmbl 25507 opnmblALT 25510 mbfimaopnlem 25562 aannenlem3 26244 n0ssold 28251 exrecfnlem 37362 poimirlem32 37641 numinfctb 43085 onexomgt 43223 onexlimgt 43225 onexoegt 43226 1oaomeqom 43275 oaabsb 43276 oaordnrex 43277 oaordnr 43278 2omomeqom 43285 omnord1ex 43286 omnord1 43287 nnoeomeqom 43294 oenord1 43298 oaomoencom 43299 cantnftermord 43302 cantnfub 43303 cantnf2 43307 nnawordexg 43309 dflim5 43311 oacl2g 43312 onmcl 43313 omabs2 43314 omcl2 43315 tfsnfin 43334 ofoaf 43337 ofoafo 43338 naddcnff 43344 naddcnffo 43346 naddcnfcom 43348 naddcnfid1 43349 naddcnfid2 43350 naddcnfass 43351 naddwordnexlem0 43378 naddwordnexlem1 43379 naddwordnexlem3 43381 oawordex3 43382 naddwordnexlem4 43383 infordmin 43514 minregex 43516 omiscard 43525 sucomisnotcard 43526 aleph1min 43539 alephiso3 43541 wfaxinf2 44984 |
| Copyright terms: Public domain | W3C validator |