| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version | ||
| Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon | ⊢ ω ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9528 | . 2 ⊢ ω ∈ V | |
| 2 | omelon2 7804 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 Vcvv 3434 Oncon0 6302 ωcom 7791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-om 7792 |
| This theorem is referenced by: oancom 9536 cnfcomlem 9584 cnfcom 9585 cnfcom2lem 9586 cnfcom2 9587 cnfcom3lem 9588 cnfcom3 9589 cnfcom3clem 9590 cardom 9871 infxpenlem 9896 xpomen 9898 infxpidm2 9900 infxpenc 9901 infxpenc2lem1 9902 infxpenc2 9905 alephon 9952 infenaleph 9974 iunfictbso 9997 dfac12k 10031 infunsdom1 10095 domtriomlem 10325 iunctb 10457 pwcfsdom 10466 canthp1lem2 10536 pwfseqlem4a 10544 pwfseqlem4 10545 pwfseqlem5 10546 wunex3 10624 znnen 16113 qnnen 16114 cygctb 19797 2ndcctbss 23363 2ndcomap 23366 2ndcsep 23367 tx1stc 23558 tx2ndc 23559 met1stc 24429 met2ndci 24430 re2ndc 24709 uniiccdif 25499 dyadmbl 25521 opnmblALT 25524 mbfimaopnlem 25576 aannenlem3 26258 n0ssold 28274 exrecfnlem 37392 poimirlem32 37671 numinfctb 43115 onexomgt 43253 onexlimgt 43255 onexoegt 43256 1oaomeqom 43305 oaabsb 43306 oaordnrex 43307 oaordnr 43308 2omomeqom 43315 omnord1ex 43316 omnord1 43317 nnoeomeqom 43324 oenord1 43328 oaomoencom 43329 cantnftermord 43332 cantnfub 43333 cantnf2 43337 nnawordexg 43339 dflim5 43341 oacl2g 43342 onmcl 43343 omabs2 43344 omcl2 43345 tfsnfin 43364 ofoaf 43367 ofoafo 43368 naddcnff 43374 naddcnffo 43376 naddcnfcom 43378 naddcnfid1 43379 naddcnfid2 43380 naddcnfass 43381 naddwordnexlem0 43408 naddwordnexlem1 43409 naddwordnexlem3 43411 oawordex3 43412 naddwordnexlem4 43413 infordmin 43544 minregex 43546 omiscard 43555 sucomisnotcard 43556 aleph1min 43569 alephiso3 43571 wfaxinf2 45013 |
| Copyright terms: Public domain | W3C validator |