| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omelon | Structured version Visualization version GIF version | ||
| Description: Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| omelon | ⊢ ω ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9649 | . 2 ⊢ ω ∈ V | |
| 2 | omelon2 7868 | . 2 ⊢ (ω ∈ V → ω ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3457 Oncon0 6349 ωcom 7855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 ax-inf2 9647 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-tr 5227 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-om 7856 |
| This theorem is referenced by: oancom 9657 cnfcomlem 9705 cnfcom 9706 cnfcom2lem 9707 cnfcom2 9708 cnfcom3lem 9709 cnfcom3 9710 cnfcom3clem 9711 cardom 9992 infxpenlem 10019 xpomen 10021 infxpidm2 10023 infxpenc 10024 infxpenc2lem1 10025 infxpenc2 10028 alephon 10075 infenaleph 10097 iunfictbso 10120 dfac12k 10154 infunsdom1 10218 domtriomlem 10448 iunctb 10580 pwcfsdom 10589 canthp1lem2 10659 pwfseqlem4a 10667 pwfseqlem4 10668 pwfseqlem5 10669 wunex3 10747 znnen 16215 qnnen 16216 cygctb 19858 2ndcctbss 23378 2ndcomap 23381 2ndcsep 23382 tx1stc 23573 tx2ndc 23574 met1stc 24445 met2ndci 24446 re2ndc 24725 uniiccdif 25516 dyadmbl 25538 opnmblALT 25541 mbfimaopnlem 25593 aannenlem3 26275 n0ssold 28258 exrecfnlem 37318 poimirlem32 37597 numinfctb 43052 onexomgt 43190 onexlimgt 43192 onexoegt 43193 1oaomeqom 43242 oaabsb 43243 oaordnrex 43244 oaordnr 43245 2omomeqom 43252 omnord1ex 43253 omnord1 43254 nnoeomeqom 43261 oenord1 43265 oaomoencom 43266 cantnftermord 43269 cantnfub 43270 cantnf2 43274 nnawordexg 43276 dflim5 43278 oacl2g 43279 onmcl 43280 omabs2 43281 omcl2 43282 tfsnfin 43301 ofoaf 43304 ofoafo 43305 naddcnff 43311 naddcnffo 43313 naddcnfcom 43315 naddcnfid1 43316 naddcnfid2 43317 naddcnfass 43318 naddwordnexlem0 43345 naddwordnexlem1 43346 naddwordnexlem3 43348 oawordex3 43349 naddwordnexlem4 43350 infordmin 43481 minregex 43483 omiscard 43492 sucomisnotcard 43493 aleph1min 43506 alephiso3 43508 wfaxinf2 44953 |
| Copyright terms: Public domain | W3C validator |