![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq5 | Structured version Visualization version GIF version |
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 9681.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
infeq5 | ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3983 | . . . . 5 ⊢ (𝑥 ⊊ ∪ 𝑥 ↔ (𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥)) | |
2 | unieq 4923 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → ∪ 𝑥 = ∪ ∅) | |
3 | uni0 4940 | . . . . . . . . . 10 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | eqtr2di 2792 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → ∅ = ∪ 𝑥) |
5 | eqtr 2758 | . . . . . . . . 9 ⊢ ((𝑥 = ∅ ∧ ∅ = ∪ 𝑥) → 𝑥 = ∪ 𝑥) | |
6 | 4, 5 | mpdan 687 | . . . . . . . 8 ⊢ (𝑥 = ∅ → 𝑥 = ∪ 𝑥) |
7 | 6 | necon3i 2971 | . . . . . . 7 ⊢ (𝑥 ≠ ∪ 𝑥 → 𝑥 ≠ ∅) |
8 | 7 | anim1i 615 | . . . . . 6 ⊢ ((𝑥 ≠ ∪ 𝑥 ∧ 𝑥 ⊆ ∪ 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
10 | 1, 9 | sylbi 217 | . . . 4 ⊢ (𝑥 ⊊ ∪ 𝑥 → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
11 | 10 | eximi 1832 | . . 3 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 → ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
12 | eqid 2735 | . . . . 5 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
13 | eqid 2735 | . . . . 5 ⊢ (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) | |
14 | vex 3482 | . . . . 5 ⊢ 𝑥 ∈ V | |
15 | 12, 13, 14, 14 | inf3lem7 9672 | . . . 4 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
16 | 15 | exlimiv 1928 | . . 3 ⊢ (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
17 | 11, 16 | syl 17 | . 2 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 → ω ∈ V) |
18 | infeq5i 9674 | . 2 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) | |
19 | 17, 18 | impbii 209 | 1 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 {crab 3433 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ⊊ wpss 3964 ∅c0 4339 ∪ cuni 4912 ↦ cmpt 5231 ↾ cres 5691 ωcom 7887 reccrdg 8448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |