MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq5 Structured version   Visualization version   GIF version

Theorem infeq5 9325
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 9331.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
infeq5 (∃𝑥 𝑥 𝑥 ↔ ω ∈ V)

Proof of Theorem infeq5
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pss 3902 . . . . 5 (𝑥 𝑥 ↔ (𝑥 𝑥𝑥 𝑥))
2 unieq 4847 . . . . . . . . . 10 (𝑥 = ∅ → 𝑥 = ∅)
3 uni0 4866 . . . . . . . . . 10 ∅ = ∅
42, 3eqtr2di 2796 . . . . . . . . 9 (𝑥 = ∅ → ∅ = 𝑥)
5 eqtr 2761 . . . . . . . . 9 ((𝑥 = ∅ ∧ ∅ = 𝑥) → 𝑥 = 𝑥)
64, 5mpdan 683 . . . . . . . 8 (𝑥 = ∅ → 𝑥 = 𝑥)
76necon3i 2975 . . . . . . 7 (𝑥 𝑥𝑥 ≠ ∅)
87anim1i 614 . . . . . 6 ((𝑥 𝑥𝑥 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 𝑥))
98ancoms 458 . . . . 5 ((𝑥 𝑥𝑥 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 𝑥))
101, 9sylbi 216 . . . 4 (𝑥 𝑥 → (𝑥 ≠ ∅ ∧ 𝑥 𝑥))
1110eximi 1838 . . 3 (∃𝑥 𝑥 𝑥 → ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥))
12 eqid 2738 . . . . 5 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
13 eqid 2738 . . . . 5 (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω)
14 vex 3426 . . . . 5 𝑥 ∈ V
1512, 13, 14, 14inf3lem7 9322 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
1615exlimiv 1934 . . 3 (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
1711, 16syl 17 . 2 (∃𝑥 𝑥 𝑥 → ω ∈ V)
18 infeq5i 9324 . 2 (ω ∈ V → ∃𝑥 𝑥 𝑥)
1917, 18impbii 208 1 (∃𝑥 𝑥 𝑥 ↔ ω ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  cin 3882  wss 3883  wpss 3884  c0 4253   cuni 4836  cmpt 5153  cres 5582  ωcom 7687  reccrdg 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator