MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq5 Structured version   Visualization version   GIF version

Theorem infeq5 9706
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 9712.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
infeq5 (∃𝑥 𝑥 𝑥 ↔ ω ∈ V)

Proof of Theorem infeq5
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pss 3996 . . . . 5 (𝑥 𝑥 ↔ (𝑥 𝑥𝑥 𝑥))
2 unieq 4942 . . . . . . . . . 10 (𝑥 = ∅ → 𝑥 = ∅)
3 uni0 4959 . . . . . . . . . 10 ∅ = ∅
42, 3eqtr2di 2797 . . . . . . . . 9 (𝑥 = ∅ → ∅ = 𝑥)
5 eqtr 2763 . . . . . . . . 9 ((𝑥 = ∅ ∧ ∅ = 𝑥) → 𝑥 = 𝑥)
64, 5mpdan 686 . . . . . . . 8 (𝑥 = ∅ → 𝑥 = 𝑥)
76necon3i 2979 . . . . . . 7 (𝑥 𝑥𝑥 ≠ ∅)
87anim1i 614 . . . . . 6 ((𝑥 𝑥𝑥 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 𝑥))
98ancoms 458 . . . . 5 ((𝑥 𝑥𝑥 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 𝑥))
101, 9sylbi 217 . . . 4 (𝑥 𝑥 → (𝑥 ≠ ∅ ∧ 𝑥 𝑥))
1110eximi 1833 . . 3 (∃𝑥 𝑥 𝑥 → ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥))
12 eqid 2740 . . . . 5 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
13 eqid 2740 . . . . 5 (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω)
14 vex 3492 . . . . 5 𝑥 ∈ V
1512, 13, 14, 14inf3lem7 9703 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
1615exlimiv 1929 . . 3 (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
1711, 16syl 17 . 2 (∃𝑥 𝑥 𝑥 → ω ∈ V)
18 infeq5i 9705 . 2 (ω ∈ V → ∃𝑥 𝑥 𝑥)
1917, 18impbii 209 1 (∃𝑥 𝑥 𝑥 ↔ ω ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  cin 3975  wss 3976  wpss 3977  c0 4352   cuni 4931  cmpt 5249  cres 5702  ωcom 7903  reccrdg 8465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator