| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq5 | Structured version Visualization version GIF version | ||
| Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 9683.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| infeq5 | ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3971 | . . . . 5 ⊢ (𝑥 ⊊ ∪ 𝑥 ↔ (𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥)) | |
| 2 | unieq 4918 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → ∪ 𝑥 = ∪ ∅) | |
| 3 | uni0 4935 | . . . . . . . . . 10 ⊢ ∪ ∅ = ∅ | |
| 4 | 2, 3 | eqtr2di 2794 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → ∅ = ∪ 𝑥) |
| 5 | eqtr 2760 | . . . . . . . . 9 ⊢ ((𝑥 = ∅ ∧ ∅ = ∪ 𝑥) → 𝑥 = ∪ 𝑥) | |
| 6 | 4, 5 | mpdan 687 | . . . . . . . 8 ⊢ (𝑥 = ∅ → 𝑥 = ∪ 𝑥) |
| 7 | 6 | necon3i 2973 | . . . . . . 7 ⊢ (𝑥 ≠ ∪ 𝑥 → 𝑥 ≠ ∅) |
| 8 | 7 | anim1i 615 | . . . . . 6 ⊢ ((𝑥 ≠ ∪ 𝑥 ∧ 𝑥 ⊆ ∪ 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
| 9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
| 10 | 1, 9 | sylbi 217 | . . . 4 ⊢ (𝑥 ⊊ ∪ 𝑥 → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
| 11 | 10 | eximi 1835 | . . 3 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 → ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
| 12 | eqid 2737 | . . . . 5 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
| 13 | eqid 2737 | . . . . 5 ⊢ (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) | |
| 14 | vex 3484 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 15 | 12, 13, 14, 14 | inf3lem7 9674 | . . . 4 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
| 16 | 15 | exlimiv 1930 | . . 3 ⊢ (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
| 17 | 11, 16 | syl 17 | . 2 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 → ω ∈ V) |
| 18 | infeq5i 9676 | . 2 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) | |
| 19 | 17, 18 | impbii 209 | 1 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 {crab 3436 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 ⊊ wpss 3952 ∅c0 4333 ∪ cuni 4907 ↦ cmpt 5225 ↾ cres 5687 ωcom 7887 reccrdg 8449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |