MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq5 Structured version   Visualization version   GIF version

Theorem infeq5 9527
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 9533.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
infeq5 (∃𝑥 𝑥 𝑥 ↔ ω ∈ V)

Proof of Theorem infeq5
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pss 3917 . . . . 5 (𝑥 𝑥 ↔ (𝑥 𝑥𝑥 𝑥))
2 unieq 4867 . . . . . . . . . 10 (𝑥 = ∅ → 𝑥 = ∅)
3 uni0 4884 . . . . . . . . . 10 ∅ = ∅
42, 3eqtr2di 2783 . . . . . . . . 9 (𝑥 = ∅ → ∅ = 𝑥)
5 eqtr 2751 . . . . . . . . 9 ((𝑥 = ∅ ∧ ∅ = 𝑥) → 𝑥 = 𝑥)
64, 5mpdan 687 . . . . . . . 8 (𝑥 = ∅ → 𝑥 = 𝑥)
76necon3i 2960 . . . . . . 7 (𝑥 𝑥𝑥 ≠ ∅)
87anim1i 615 . . . . . 6 ((𝑥 𝑥𝑥 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 𝑥))
98ancoms 458 . . . . 5 ((𝑥 𝑥𝑥 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 𝑥))
101, 9sylbi 217 . . . 4 (𝑥 𝑥 → (𝑥 ≠ ∅ ∧ 𝑥 𝑥))
1110eximi 1836 . . 3 (∃𝑥 𝑥 𝑥 → ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥))
12 eqid 2731 . . . . 5 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
13 eqid 2731 . . . . 5 (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}), ∅) ↾ ω)
14 vex 3440 . . . . 5 𝑥 ∈ V
1512, 13, 14, 14inf3lem7 9524 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
1615exlimiv 1931 . . 3 (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
1711, 16syl 17 . 2 (∃𝑥 𝑥 𝑥 → ω ∈ V)
18 infeq5i 9526 . 2 (ω ∈ V → ∃𝑥 𝑥 𝑥)
1917, 18impbii 209 1 (∃𝑥 𝑥 𝑥 ↔ ω ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  cin 3896  wss 3897  wpss 3898  c0 4280   cuni 4856  cmpt 5170  cres 5616  ωcom 7796  reccrdg 8328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator