![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq5 | Structured version Visualization version GIF version |
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 9668.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
infeq5 | ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3964 | . . . . 5 ⊢ (𝑥 ⊊ ∪ 𝑥 ↔ (𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥)) | |
2 | unieq 4920 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → ∪ 𝑥 = ∪ ∅) | |
3 | uni0 4939 | . . . . . . . . . 10 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | eqtr2di 2782 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → ∅ = ∪ 𝑥) |
5 | eqtr 2748 | . . . . . . . . 9 ⊢ ((𝑥 = ∅ ∧ ∅ = ∪ 𝑥) → 𝑥 = ∪ 𝑥) | |
6 | 4, 5 | mpdan 685 | . . . . . . . 8 ⊢ (𝑥 = ∅ → 𝑥 = ∪ 𝑥) |
7 | 6 | necon3i 2962 | . . . . . . 7 ⊢ (𝑥 ≠ ∪ 𝑥 → 𝑥 ≠ ∅) |
8 | 7 | anim1i 613 | . . . . . 6 ⊢ ((𝑥 ≠ ∪ 𝑥 ∧ 𝑥 ⊆ ∪ 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
9 | 8 | ancoms 457 | . . . . 5 ⊢ ((𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
10 | 1, 9 | sylbi 216 | . . . 4 ⊢ (𝑥 ⊊ ∪ 𝑥 → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
11 | 10 | eximi 1829 | . . 3 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 → ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
12 | eqid 2725 | . . . . 5 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
13 | eqid 2725 | . . . . 5 ⊢ (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) | |
14 | vex 3465 | . . . . 5 ⊢ 𝑥 ∈ V | |
15 | 12, 13, 14, 14 | inf3lem7 9659 | . . . 4 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
16 | 15 | exlimiv 1925 | . . 3 ⊢ (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
17 | 11, 16 | syl 17 | . 2 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 → ω ∈ V) |
18 | infeq5i 9661 | . 2 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) | |
19 | 17, 18 | impbii 208 | 1 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2929 {crab 3418 Vcvv 3461 ∩ cin 3943 ⊆ wss 3944 ⊊ wpss 3945 ∅c0 4322 ∪ cuni 4909 ↦ cmpt 5232 ↾ cres 5680 ωcom 7871 reccrdg 8430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-reg 9617 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |