Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infeq5 | Structured version Visualization version GIF version |
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 9331.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
infeq5 | ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3902 | . . . . 5 ⊢ (𝑥 ⊊ ∪ 𝑥 ↔ (𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥)) | |
2 | unieq 4847 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → ∪ 𝑥 = ∪ ∅) | |
3 | uni0 4866 | . . . . . . . . . 10 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | eqtr2di 2796 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → ∅ = ∪ 𝑥) |
5 | eqtr 2761 | . . . . . . . . 9 ⊢ ((𝑥 = ∅ ∧ ∅ = ∪ 𝑥) → 𝑥 = ∪ 𝑥) | |
6 | 4, 5 | mpdan 683 | . . . . . . . 8 ⊢ (𝑥 = ∅ → 𝑥 = ∪ 𝑥) |
7 | 6 | necon3i 2975 | . . . . . . 7 ⊢ (𝑥 ≠ ∪ 𝑥 → 𝑥 ≠ ∅) |
8 | 7 | anim1i 614 | . . . . . 6 ⊢ ((𝑥 ≠ ∪ 𝑥 ∧ 𝑥 ⊆ ∪ 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
10 | 1, 9 | sylbi 216 | . . . 4 ⊢ (𝑥 ⊊ ∪ 𝑥 → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
11 | 10 | eximi 1838 | . . 3 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 → ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
12 | eqid 2738 | . . . . 5 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
13 | eqid 2738 | . . . . 5 ⊢ (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) | |
14 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
15 | 12, 13, 14, 14 | inf3lem7 9322 | . . . 4 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
16 | 15 | exlimiv 1934 | . . 3 ⊢ (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
17 | 11, 16 | syl 17 | . 2 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 → ω ∈ V) |
18 | infeq5i 9324 | . 2 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) | |
19 | 17, 18 | impbii 208 | 1 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ⊊ wpss 3884 ∅c0 4253 ∪ cuni 4836 ↦ cmpt 5153 ↾ cres 5582 ωcom 7687 reccrdg 8211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |