![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnrefiisp | Structured version Visualization version GIF version |
Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
cnrefiisp.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cnrefiisp.n | ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
cnrefiisp.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
cnrefiisp.c | ⊢ 𝐶 = (ℝ ∪ 𝐵) |
Ref | Expression |
---|---|
cnrefiisp | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrefiisp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | cnrefiisp.n | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) | |
3 | cnrefiisp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
4 | cnrefiisp.c | . . 3 ⊢ 𝐶 = (ℝ ∪ 𝐵) | |
5 | eqid 2725 | . . 3 ⊢ ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) | |
6 | fvoveq1 7439 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (abs‘(𝑧 − 𝐴)) = (abs‘(𝑤 − 𝐴))) | |
7 | 6 | sneqd 4636 | . . . . . 6 ⊢ (𝑧 = 𝑤 → {(abs‘(𝑧 − 𝐴))} = {(abs‘(𝑤 − 𝐴))}) |
8 | 7 | cbviunv 5038 | . . . . 5 ⊢ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))} = ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))} |
9 | 8 | uneq2i 4153 | . . . 4 ⊢ ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) |
10 | 9 | infeq1i 9501 | . . 3 ⊢ inf(({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))}), ℝ*, < ) = inf(({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}), ℝ*, < ) |
11 | 1, 2, 3, 4, 5, 10 | cnrefiisplem 45280 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴)))) |
12 | eleq1w 2808 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ)) | |
13 | neeq1 2993 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ≠ 𝐴 ↔ 𝑦 ≠ 𝐴)) | |
14 | 12, 13 | anbi12d 630 | . . . . 5 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴))) |
15 | fvoveq1 7439 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (abs‘(𝑤 − 𝐴)) = (abs‘(𝑦 − 𝐴))) | |
16 | 15 | breq2d 5155 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑥 ≤ (abs‘(𝑤 − 𝐴)) ↔ 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
17 | 14, 16 | imbi12d 343 | . . . 4 ⊢ (𝑤 = 𝑦 → (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴))))) |
18 | 17 | cbvralvw 3225 | . . 3 ⊢ (∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
19 | 18 | rexbii 3084 | . 2 ⊢ (∃𝑥 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
20 | 11, 19 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 ∖ cdif 3936 ∪ cun 3937 ∩ cin 3938 {csn 4624 ∪ ciun 4991 class class class wbr 5143 ‘cfv 6543 (class class class)co 7416 Fincfn 8962 infcinf 9464 ℂcc 11136 ℝcr 11137 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 − cmin 11474 ℝ+crp 13006 ℑcim 15077 abscabs 15213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 |
This theorem is referenced by: climxlim2lem 45296 |
Copyright terms: Public domain | W3C validator |