Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrefiisp Structured version   Visualization version   GIF version

Theorem cnrefiisp 43371
Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
cnrefiisp.a (𝜑𝐴 ∈ ℂ)
cnrefiisp.n (𝜑 → ¬ 𝐴 ∈ ℝ)
cnrefiisp.b (𝜑𝐵 ∈ Fin)
cnrefiisp.c 𝐶 = (ℝ ∪ 𝐵)
Assertion
Ref Expression
cnrefiisp (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem cnrefiisp
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnrefiisp.a . . 3 (𝜑𝐴 ∈ ℂ)
2 cnrefiisp.n . . 3 (𝜑 → ¬ 𝐴 ∈ ℝ)
3 cnrefiisp.b . . 3 (𝜑𝐵 ∈ Fin)
4 cnrefiisp.c . . 3 𝐶 = (ℝ ∪ 𝐵)
5 eqid 2738 . . 3 ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
6 fvoveq1 7298 . . . . . . 7 (𝑧 = 𝑤 → (abs‘(𝑧𝐴)) = (abs‘(𝑤𝐴)))
76sneqd 4573 . . . . . 6 (𝑧 = 𝑤 → {(abs‘(𝑧𝐴))} = {(abs‘(𝑤𝐴))})
87cbviunv 4970 . . . . 5 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))} = 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}
98uneq2i 4094 . . . 4 ({(abs‘(ℑ‘𝐴))} ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
109infeq1i 9237 . . 3 inf(({(abs‘(ℑ‘𝐴))} ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))}), ℝ*, < ) = inf(({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}), ℝ*, < )
111, 2, 3, 4, 5, 10cnrefiisplem 43370 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))))
12 eleq1w 2821 . . . . . 6 (𝑤 = 𝑦 → (𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ))
13 neeq1 3006 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
1412, 13anbi12d 631 . . . . 5 (𝑤 = 𝑦 → ((𝑤 ∈ ℂ ∧ 𝑤𝐴) ↔ (𝑦 ∈ ℂ ∧ 𝑦𝐴)))
15 fvoveq1 7298 . . . . . 6 (𝑤 = 𝑦 → (abs‘(𝑤𝐴)) = (abs‘(𝑦𝐴)))
1615breq2d 5086 . . . . 5 (𝑤 = 𝑦 → (𝑥 ≤ (abs‘(𝑤𝐴)) ↔ 𝑥 ≤ (abs‘(𝑦𝐴))))
1714, 16imbi12d 345 . . . 4 (𝑤 = 𝑦 → (((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))))
1817cbvralvw 3383 . . 3 (∀𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
1918rexbii 3181 . 2 (∃𝑥 ∈ ℝ+𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
2011, 19sylib 217 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  cun 3885  cin 3886  {csn 4561   ciun 4924   class class class wbr 5074  cfv 6433  (class class class)co 7275  Fincfn 8733  infcinf 9200  cc 10869  cr 10870  *cxr 11008   < clt 11009  cle 11010  cmin 11205  +crp 12730  cim 14809  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  climxlim2lem  43386
  Copyright terms: Public domain W3C validator