![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnrefiisp | Structured version Visualization version GIF version |
Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
cnrefiisp.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cnrefiisp.n | ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
cnrefiisp.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
cnrefiisp.c | ⊢ 𝐶 = (ℝ ∪ 𝐵) |
Ref | Expression |
---|---|
cnrefiisp | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrefiisp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | cnrefiisp.n | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) | |
3 | cnrefiisp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
4 | cnrefiisp.c | . . 3 ⊢ 𝐶 = (ℝ ∪ 𝐵) | |
5 | eqid 2733 | . . 3 ⊢ ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) | |
6 | fvoveq1 7381 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (abs‘(𝑧 − 𝐴)) = (abs‘(𝑤 − 𝐴))) | |
7 | 6 | sneqd 4599 | . . . . . 6 ⊢ (𝑧 = 𝑤 → {(abs‘(𝑧 − 𝐴))} = {(abs‘(𝑤 − 𝐴))}) |
8 | 7 | cbviunv 5001 | . . . . 5 ⊢ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))} = ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))} |
9 | 8 | uneq2i 4121 | . . . 4 ⊢ ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) |
10 | 9 | infeq1i 9419 | . . 3 ⊢ inf(({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))}), ℝ*, < ) = inf(({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}), ℝ*, < ) |
11 | 1, 2, 3, 4, 5, 10 | cnrefiisplem 44156 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴)))) |
12 | eleq1w 2817 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ)) | |
13 | neeq1 3003 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ≠ 𝐴 ↔ 𝑦 ≠ 𝐴)) | |
14 | 12, 13 | anbi12d 632 | . . . . 5 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴))) |
15 | fvoveq1 7381 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (abs‘(𝑤 − 𝐴)) = (abs‘(𝑦 − 𝐴))) | |
16 | 15 | breq2d 5118 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑥 ≤ (abs‘(𝑤 − 𝐴)) ↔ 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
17 | 14, 16 | imbi12d 345 | . . . 4 ⊢ (𝑤 = 𝑦 → (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴))))) |
18 | 17 | cbvralvw 3224 | . . 3 ⊢ (∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
19 | 18 | rexbii 3094 | . 2 ⊢ (∃𝑥 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
20 | 11, 19 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 {csn 4587 ∪ ciun 4955 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 Fincfn 8886 infcinf 9382 ℂcc 11054 ℝcr 11055 ℝ*cxr 11193 < clt 11194 ≤ cle 11195 − cmin 11390 ℝ+crp 12920 ℑcim 14989 abscabs 15125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-inf 9384 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-seq 13913 df-exp 13974 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 |
This theorem is referenced by: climxlim2lem 44172 |
Copyright terms: Public domain | W3C validator |