Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrefiisp Structured version   Visualization version   GIF version

Theorem cnrefiisp 44157
Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
cnrefiisp.a (𝜑𝐴 ∈ ℂ)
cnrefiisp.n (𝜑 → ¬ 𝐴 ∈ ℝ)
cnrefiisp.b (𝜑𝐵 ∈ Fin)
cnrefiisp.c 𝐶 = (ℝ ∪ 𝐵)
Assertion
Ref Expression
cnrefiisp (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem cnrefiisp
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnrefiisp.a . . 3 (𝜑𝐴 ∈ ℂ)
2 cnrefiisp.n . . 3 (𝜑 → ¬ 𝐴 ∈ ℝ)
3 cnrefiisp.b . . 3 (𝜑𝐵 ∈ Fin)
4 cnrefiisp.c . . 3 𝐶 = (ℝ ∪ 𝐵)
5 eqid 2733 . . 3 ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
6 fvoveq1 7381 . . . . . . 7 (𝑧 = 𝑤 → (abs‘(𝑧𝐴)) = (abs‘(𝑤𝐴)))
76sneqd 4599 . . . . . 6 (𝑧 = 𝑤 → {(abs‘(𝑧𝐴))} = {(abs‘(𝑤𝐴))})
87cbviunv 5001 . . . . 5 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))} = 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}
98uneq2i 4121 . . . 4 ({(abs‘(ℑ‘𝐴))} ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
109infeq1i 9419 . . 3 inf(({(abs‘(ℑ‘𝐴))} ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))}), ℝ*, < ) = inf(({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}), ℝ*, < )
111, 2, 3, 4, 5, 10cnrefiisplem 44156 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))))
12 eleq1w 2817 . . . . . 6 (𝑤 = 𝑦 → (𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ))
13 neeq1 3003 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
1412, 13anbi12d 632 . . . . 5 (𝑤 = 𝑦 → ((𝑤 ∈ ℂ ∧ 𝑤𝐴) ↔ (𝑦 ∈ ℂ ∧ 𝑦𝐴)))
15 fvoveq1 7381 . . . . . 6 (𝑤 = 𝑦 → (abs‘(𝑤𝐴)) = (abs‘(𝑦𝐴)))
1615breq2d 5118 . . . . 5 (𝑤 = 𝑦 → (𝑥 ≤ (abs‘(𝑤𝐴)) ↔ 𝑥 ≤ (abs‘(𝑦𝐴))))
1714, 16imbi12d 345 . . . 4 (𝑤 = 𝑦 → (((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))))
1817cbvralvw 3224 . . 3 (∀𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
1918rexbii 3094 . 2 (∃𝑥 ∈ ℝ+𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
2011, 19sylib 217 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2940  wral 3061  wrex 3070  cdif 3908  cun 3909  cin 3910  {csn 4587   ciun 4955   class class class wbr 5106  cfv 6497  (class class class)co 7358  Fincfn 8886  infcinf 9382  cc 11054  cr 11055  *cxr 11193   < clt 11194  cle 11195  cmin 11390  +crp 12920  cim 14989  abscabs 15125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-inf 9384  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-seq 13913  df-exp 13974  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127
This theorem is referenced by:  climxlim2lem  44172
  Copyright terms: Public domain W3C validator