Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrefiisp Structured version   Visualization version   GIF version

Theorem cnrefiisp 42487
 Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
cnrefiisp.a (𝜑𝐴 ∈ ℂ)
cnrefiisp.n (𝜑 → ¬ 𝐴 ∈ ℝ)
cnrefiisp.b (𝜑𝐵 ∈ Fin)
cnrefiisp.c 𝐶 = (ℝ ∪ 𝐵)
Assertion
Ref Expression
cnrefiisp (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem cnrefiisp
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnrefiisp.a . . 3 (𝜑𝐴 ∈ ℂ)
2 cnrefiisp.n . . 3 (𝜑 → ¬ 𝐴 ∈ ℝ)
3 cnrefiisp.b . . 3 (𝜑𝐵 ∈ Fin)
4 cnrefiisp.c . . 3 𝐶 = (ℝ ∪ 𝐵)
5 eqid 2798 . . 3 ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
6 fvoveq1 7158 . . . . . . 7 (𝑧 = 𝑤 → (abs‘(𝑧𝐴)) = (abs‘(𝑤𝐴)))
76sneqd 4537 . . . . . 6 (𝑧 = 𝑤 → {(abs‘(𝑧𝐴))} = {(abs‘(𝑤𝐴))})
87cbviunv 4927 . . . . 5 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))} = 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}
98uneq2i 4087 . . . 4 ({(abs‘(ℑ‘𝐴))} ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
109infeq1i 8928 . . 3 inf(({(abs‘(ℑ‘𝐴))} ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))}), ℝ*, < ) = inf(({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}), ℝ*, < )
111, 2, 3, 4, 5, 10cnrefiisplem 42486 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))))
12 eleq1w 2872 . . . . . 6 (𝑤 = 𝑦 → (𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ))
13 neeq1 3049 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
1412, 13anbi12d 633 . . . . 5 (𝑤 = 𝑦 → ((𝑤 ∈ ℂ ∧ 𝑤𝐴) ↔ (𝑦 ∈ ℂ ∧ 𝑦𝐴)))
15 fvoveq1 7158 . . . . . 6 (𝑤 = 𝑦 → (abs‘(𝑤𝐴)) = (abs‘(𝑦𝐴)))
1615breq2d 5042 . . . . 5 (𝑤 = 𝑦 → (𝑥 ≤ (abs‘(𝑤𝐴)) ↔ 𝑥 ≤ (abs‘(𝑦𝐴))))
1714, 16imbi12d 348 . . . 4 (𝑤 = 𝑦 → (((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))))
1817cbvralvw 3396 . . 3 (∀𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
1918rexbii 3210 . 2 (∃𝑥 ∈ ℝ+𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
2011, 19sylib 221 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107   ∖ cdif 3878   ∪ cun 3879   ∩ cin 3880  {csn 4525  ∪ ciun 4881   class class class wbr 5030  ‘cfv 6324  (class class class)co 7135  Fincfn 8494  infcinf 8891  ℂcc 10526  ℝcr 10527  ℝ*cxr 10665   < clt 10666   ≤ cle 10667   − cmin 10861  ℝ+crp 12379  ℑcim 14451  abscabs 14587 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-n0 11888  df-z 11972  df-uz 12234  df-rp 12380  df-seq 13367  df-exp 13428  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589 This theorem is referenced by:  climxlim2lem  42502
 Copyright terms: Public domain W3C validator