Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrefiisp Structured version   Visualization version   GIF version

Theorem cnrefiisp 44546
Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
cnrefiisp.a (𝜑𝐴 ∈ ℂ)
cnrefiisp.n (𝜑 → ¬ 𝐴 ∈ ℝ)
cnrefiisp.b (𝜑𝐵 ∈ Fin)
cnrefiisp.c 𝐶 = (ℝ ∪ 𝐵)
Assertion
Ref Expression
cnrefiisp (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem cnrefiisp
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnrefiisp.a . . 3 (𝜑𝐴 ∈ ℂ)
2 cnrefiisp.n . . 3 (𝜑 → ¬ 𝐴 ∈ ℝ)
3 cnrefiisp.b . . 3 (𝜑𝐵 ∈ Fin)
4 cnrefiisp.c . . 3 𝐶 = (ℝ ∪ 𝐵)
5 eqid 2733 . . 3 ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
6 fvoveq1 7432 . . . . . . 7 (𝑧 = 𝑤 → (abs‘(𝑧𝐴)) = (abs‘(𝑤𝐴)))
76sneqd 4641 . . . . . 6 (𝑧 = 𝑤 → {(abs‘(𝑧𝐴))} = {(abs‘(𝑤𝐴))})
87cbviunv 5044 . . . . 5 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))} = 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}
98uneq2i 4161 . . . 4 ({(abs‘(ℑ‘𝐴))} ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
109infeq1i 9473 . . 3 inf(({(abs‘(ℑ‘𝐴))} ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))}), ℝ*, < ) = inf(({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}), ℝ*, < )
111, 2, 3, 4, 5, 10cnrefiisplem 44545 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))))
12 eleq1w 2817 . . . . . 6 (𝑤 = 𝑦 → (𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ))
13 neeq1 3004 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
1412, 13anbi12d 632 . . . . 5 (𝑤 = 𝑦 → ((𝑤 ∈ ℂ ∧ 𝑤𝐴) ↔ (𝑦 ∈ ℂ ∧ 𝑦𝐴)))
15 fvoveq1 7432 . . . . . 6 (𝑤 = 𝑦 → (abs‘(𝑤𝐴)) = (abs‘(𝑦𝐴)))
1615breq2d 5161 . . . . 5 (𝑤 = 𝑦 → (𝑥 ≤ (abs‘(𝑤𝐴)) ↔ 𝑥 ≤ (abs‘(𝑦𝐴))))
1714, 16imbi12d 345 . . . 4 (𝑤 = 𝑦 → (((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))))
1817cbvralvw 3235 . . 3 (∀𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
1918rexbii 3095 . 2 (∃𝑥 ∈ ℝ+𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
2011, 19sylib 217 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  cdif 3946  cun 3947  cin 3948  {csn 4629   ciun 4998   class class class wbr 5149  cfv 6544  (class class class)co 7409  Fincfn 8939  infcinf 9436  cc 11108  cr 11109  *cxr 11247   < clt 11248  cle 11249  cmin 11444  +crp 12974  cim 15045  abscabs 15181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183
This theorem is referenced by:  climxlim2lem  44561
  Copyright terms: Public domain W3C validator