Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnrefiisp | Structured version Visualization version GIF version |
Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
cnrefiisp.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cnrefiisp.n | ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
cnrefiisp.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
cnrefiisp.c | ⊢ 𝐶 = (ℝ ∪ 𝐵) |
Ref | Expression |
---|---|
cnrefiisp | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrefiisp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | cnrefiisp.n | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) | |
3 | cnrefiisp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
4 | cnrefiisp.c | . . 3 ⊢ 𝐶 = (ℝ ∪ 𝐵) | |
5 | eqid 2738 | . . 3 ⊢ ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) | |
6 | fvoveq1 7278 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (abs‘(𝑧 − 𝐴)) = (abs‘(𝑤 − 𝐴))) | |
7 | 6 | sneqd 4570 | . . . . . 6 ⊢ (𝑧 = 𝑤 → {(abs‘(𝑧 − 𝐴))} = {(abs‘(𝑤 − 𝐴))}) |
8 | 7 | cbviunv 4966 | . . . . 5 ⊢ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))} = ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))} |
9 | 8 | uneq2i 4090 | . . . 4 ⊢ ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) |
10 | 9 | infeq1i 9167 | . . 3 ⊢ inf(({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))}), ℝ*, < ) = inf(({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}), ℝ*, < ) |
11 | 1, 2, 3, 4, 5, 10 | cnrefiisplem 43260 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴)))) |
12 | eleq1w 2821 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ)) | |
13 | neeq1 3005 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ≠ 𝐴 ↔ 𝑦 ≠ 𝐴)) | |
14 | 12, 13 | anbi12d 630 | . . . . 5 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴))) |
15 | fvoveq1 7278 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (abs‘(𝑤 − 𝐴)) = (abs‘(𝑦 − 𝐴))) | |
16 | 15 | breq2d 5082 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑥 ≤ (abs‘(𝑤 − 𝐴)) ↔ 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
17 | 14, 16 | imbi12d 344 | . . . 4 ⊢ (𝑤 = 𝑦 → (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴))))) |
18 | 17 | cbvralvw 3372 | . . 3 ⊢ (∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
19 | 18 | rexbii 3177 | . 2 ⊢ (∃𝑥 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
20 | 11, 19 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 {csn 4558 ∪ ciun 4921 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 infcinf 9130 ℂcc 10800 ℝcr 10801 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 ℝ+crp 12659 ℑcim 14737 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: climxlim2lem 43276 |
Copyright terms: Public domain | W3C validator |