![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnrefiisp | Structured version Visualization version GIF version |
Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
cnrefiisp.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cnrefiisp.n | ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) |
cnrefiisp.b | ⊢ (𝜑 → 𝐵 ∈ Fin) |
cnrefiisp.c | ⊢ 𝐶 = (ℝ ∪ 𝐵) |
Ref | Expression |
---|---|
cnrefiisp | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrefiisp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | cnrefiisp.n | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) | |
3 | cnrefiisp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
4 | cnrefiisp.c | . . 3 ⊢ 𝐶 = (ℝ ∪ 𝐵) | |
5 | eqid 2726 | . . 3 ⊢ ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) | |
6 | fvoveq1 7428 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (abs‘(𝑧 − 𝐴)) = (abs‘(𝑤 − 𝐴))) | |
7 | 6 | sneqd 4635 | . . . . . 6 ⊢ (𝑧 = 𝑤 → {(abs‘(𝑧 − 𝐴))} = {(abs‘(𝑤 − 𝐴))}) |
8 | 7 | cbviunv 5036 | . . . . 5 ⊢ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))} = ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))} |
9 | 8 | uneq2i 4155 | . . . 4 ⊢ ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}) |
10 | 9 | infeq1i 9475 | . . 3 ⊢ inf(({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧 − 𝐴))}), ℝ*, < ) = inf(({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤 − 𝐴))}), ℝ*, < ) |
11 | 1, 2, 3, 4, 5, 10 | cnrefiisplem 45117 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴)))) |
12 | eleq1w 2810 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ)) | |
13 | neeq1 2997 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ≠ 𝐴 ↔ 𝑦 ≠ 𝐴)) | |
14 | 12, 13 | anbi12d 630 | . . . . 5 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴))) |
15 | fvoveq1 7428 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (abs‘(𝑤 − 𝐴)) = (abs‘(𝑦 − 𝐴))) | |
16 | 15 | breq2d 5153 | . . . . 5 ⊢ (𝑤 = 𝑦 → (𝑥 ≤ (abs‘(𝑤 − 𝐴)) ↔ 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
17 | 14, 16 | imbi12d 344 | . . . 4 ⊢ (𝑤 = 𝑦 → (((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴))))) |
18 | 17 | cbvralvw 3228 | . . 3 ⊢ (∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
19 | 18 | rexbii 3088 | . 2 ⊢ (∃𝑥 ∈ ℝ+ ∀𝑤 ∈ 𝐶 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑤 − 𝐴))) ↔ ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
20 | 11, 19 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ∃wrex 3064 ∖ cdif 3940 ∪ cun 3941 ∩ cin 3942 {csn 4623 ∪ ciun 4990 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 Fincfn 8941 infcinf 9438 ℂcc 11110 ℝcr 11111 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 − cmin 11448 ℝ+crp 12980 ℑcim 15051 abscabs 15187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 |
This theorem is referenced by: climxlim2lem 45133 |
Copyright terms: Public domain | W3C validator |