Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrefiisp Structured version   Visualization version   GIF version

Theorem cnrefiisp 43261
Description: A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
cnrefiisp.a (𝜑𝐴 ∈ ℂ)
cnrefiisp.n (𝜑 → ¬ 𝐴 ∈ ℝ)
cnrefiisp.b (𝜑𝐵 ∈ Fin)
cnrefiisp.c 𝐶 = (ℝ ∪ 𝐵)
Assertion
Ref Expression
cnrefiisp (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem cnrefiisp
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnrefiisp.a . . 3 (𝜑𝐴 ∈ ℂ)
2 cnrefiisp.n . . 3 (𝜑 → ¬ 𝐴 ∈ ℝ)
3 cnrefiisp.b . . 3 (𝜑𝐵 ∈ Fin)
4 cnrefiisp.c . . 3 𝐶 = (ℝ ∪ 𝐵)
5 eqid 2738 . . 3 ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
6 fvoveq1 7278 . . . . . . 7 (𝑧 = 𝑤 → (abs‘(𝑧𝐴)) = (abs‘(𝑤𝐴)))
76sneqd 4570 . . . . . 6 (𝑧 = 𝑤 → {(abs‘(𝑧𝐴))} = {(abs‘(𝑤𝐴))})
87cbviunv 4966 . . . . 5 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))} = 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}
98uneq2i 4090 . . . 4 ({(abs‘(ℑ‘𝐴))} ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))}) = ({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
109infeq1i 9167 . . 3 inf(({(abs‘(ℑ‘𝐴))} ∪ 𝑧 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑧𝐴))}), ℝ*, < ) = inf(({(abs‘(ℑ‘𝐴))} ∪ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))}), ℝ*, < )
111, 2, 3, 4, 5, 10cnrefiisplem 43260 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))))
12 eleq1w 2821 . . . . . 6 (𝑤 = 𝑦 → (𝑤 ∈ ℂ ↔ 𝑦 ∈ ℂ))
13 neeq1 3005 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
1412, 13anbi12d 630 . . . . 5 (𝑤 = 𝑦 → ((𝑤 ∈ ℂ ∧ 𝑤𝐴) ↔ (𝑦 ∈ ℂ ∧ 𝑦𝐴)))
15 fvoveq1 7278 . . . . . 6 (𝑤 = 𝑦 → (abs‘(𝑤𝐴)) = (abs‘(𝑦𝐴)))
1615breq2d 5082 . . . . 5 (𝑤 = 𝑦 → (𝑥 ≤ (abs‘(𝑤𝐴)) ↔ 𝑥 ≤ (abs‘(𝑦𝐴))))
1714, 16imbi12d 344 . . . 4 (𝑤 = 𝑦 → (((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))))
1817cbvralvw 3372 . . 3 (∀𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
1918rexbii 3177 . 2 (∃𝑥 ∈ ℝ+𝑤𝐶 ((𝑤 ∈ ℂ ∧ 𝑤𝐴) → 𝑥 ≤ (abs‘(𝑤𝐴))) ↔ ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
2011, 19sylib 217 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cdif 3880  cun 3881  cin 3882  {csn 4558   ciun 4921   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  infcinf 9130  cc 10800  cr 10801  *cxr 10939   < clt 10940  cle 10941  cmin 11135  +crp 12659  cim 14737  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  climxlim2lem  43276
  Copyright terms: Public domain W3C validator