| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftalem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for fta 27017: Discharge the auxiliary variables in ftalem5 27014. (Contributed by Mario Carneiro, 20-Sep-2014.) (Proof shortened by AV, 28-Sep-2020.) |
| Ref | Expression |
|---|---|
| ftalem.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| ftalem.2 | ⊢ 𝑁 = (deg‘𝐹) |
| ftalem.3 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| ftalem.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| ftalem6.5 | ⊢ (𝜑 → (𝐹‘0) ≠ 0) |
| Ref | Expression |
|---|---|
| ftalem6 | ⊢ (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹‘𝑥)) < (abs‘(𝐹‘0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftalem.1 | . 2 ⊢ 𝐴 = (coeff‘𝐹) | |
| 2 | ftalem.2 | . 2 ⊢ 𝑁 = (deg‘𝐹) | |
| 3 | ftalem.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 4 | ftalem.4 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 5 | ftalem6.5 | . 2 ⊢ (𝜑 → (𝐹‘0) ≠ 0) | |
| 6 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝑛 → (𝐴‘𝑘) = (𝐴‘𝑛)) | |
| 7 | 6 | neeq1d 2987 | . . . 4 ⊢ (𝑘 = 𝑛 → ((𝐴‘𝑘) ≠ 0 ↔ (𝐴‘𝑛) ≠ 0)) |
| 8 | 7 | cbvrabv 3405 | . . 3 ⊢ {𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0} = {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} |
| 9 | 8 | infeq1i 9363 | . 2 ⊢ inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) |
| 10 | eqid 2731 | . 2 ⊢ (-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ))) = (-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ))) | |
| 11 | fveq2 6822 | . . . . . . 7 ⊢ (𝑟 = 𝑠 → (𝐴‘𝑟) = (𝐴‘𝑠)) | |
| 12 | oveq2 7354 | . . . . . . 7 ⊢ (𝑟 = 𝑠 → ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑟) = ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑠)) | |
| 13 | 11, 12 | oveq12d 7364 | . . . . . 6 ⊢ (𝑟 = 𝑠 → ((𝐴‘𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑟)) = ((𝐴‘𝑠) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑠))) |
| 14 | 13 | fveq2d 6826 | . . . . 5 ⊢ (𝑟 = 𝑠 → (abs‘((𝐴‘𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑟))) = (abs‘((𝐴‘𝑠) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑠)))) |
| 15 | 14 | cbvsumv 15603 | . . . 4 ⊢ Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴‘𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑟))) = Σ𝑠 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴‘𝑠) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑠))) |
| 16 | 15 | oveq1i 7356 | . . 3 ⊢ (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴‘𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1) = (Σ𝑠 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴‘𝑠) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑠))) + 1) |
| 17 | 16 | oveq2i 7357 | . 2 ⊢ ((abs‘(𝐹‘0)) / (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴‘𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1)) = ((abs‘(𝐹‘0)) / (Σ𝑠 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴‘𝑠) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑠))) + 1)) |
| 18 | eqid 2731 | . 2 ⊢ if(1 ≤ ((abs‘(𝐹‘0)) / (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴‘𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1)), 1, ((abs‘(𝐹‘0)) / (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴‘𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1))) = if(1 ≤ ((abs‘(𝐹‘0)) / (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴‘𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1)), 1, ((abs‘(𝐹‘0)) / (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴‘𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴‘𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1))) | |
| 19 | 1, 2, 3, 4, 5, 9, 10, 17, 18 | ftalem5 27014 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹‘𝑥)) < (abs‘(𝐹‘0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 ifcif 4472 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 infcinf 9325 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 < clt 11146 ≤ cle 11147 -cneg 11345 / cdiv 11774 ℕcn 12125 ...cfz 13407 ↑cexp 13968 abscabs 15141 Σcsu 15593 Polycply 26116 coeffccoe 26118 degcdgr 26119 ↑𝑐ccxp 26491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-0p 25598 df-limc 25794 df-dv 25795 df-ply 26120 df-coe 26122 df-dgr 26123 df-log 26492 df-cxp 26493 |
| This theorem is referenced by: ftalem7 27016 |
| Copyright terms: Public domain | W3C validator |