MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem6 Structured version   Visualization version   GIF version

Theorem ftalem6 26818
Description: Lemma for fta 26820: Discharge the auxiliary variables in ftalem5 26817. (Contributed by Mario Carneiro, 20-Sep-2014.) (Proof shortened by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeffβ€˜πΉ)
ftalem.2 𝑁 = (degβ€˜πΉ)
ftalem.3 (πœ‘ β†’ 𝐹 ∈ (Polyβ€˜π‘†))
ftalem.4 (πœ‘ β†’ 𝑁 ∈ β„•)
ftalem6.5 (πœ‘ β†’ (πΉβ€˜0) β‰  0)
Assertion
Ref Expression
ftalem6 (πœ‘ β†’ βˆƒπ‘₯ ∈ β„‚ (absβ€˜(πΉβ€˜π‘₯)) < (absβ€˜(πΉβ€˜0)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑁   π‘₯,𝐹   πœ‘,π‘₯
Allowed substitution hint:   𝑆(π‘₯)

Proof of Theorem ftalem6
Dummy variables π‘˜ 𝑛 π‘Ÿ 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftalem.1 . 2 𝐴 = (coeffβ€˜πΉ)
2 ftalem.2 . 2 𝑁 = (degβ€˜πΉ)
3 ftalem.3 . 2 (πœ‘ β†’ 𝐹 ∈ (Polyβ€˜π‘†))
4 ftalem.4 . 2 (πœ‘ β†’ 𝑁 ∈ β„•)
5 ftalem6.5 . 2 (πœ‘ β†’ (πΉβ€˜0) β‰  0)
6 fveq2 6890 . . . . 5 (π‘˜ = 𝑛 β†’ (π΄β€˜π‘˜) = (π΄β€˜π‘›))
76neeq1d 2998 . . . 4 (π‘˜ = 𝑛 β†’ ((π΄β€˜π‘˜) β‰  0 ↔ (π΄β€˜π‘›) β‰  0))
87cbvrabv 3440 . . 3 {π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0} = {𝑛 ∈ β„• ∣ (π΄β€˜π‘›) β‰  0}
98infeq1i 9475 . 2 inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) = inf({𝑛 ∈ β„• ∣ (π΄β€˜π‘›) β‰  0}, ℝ, < )
10 eqid 2730 . 2 (-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ))) = (-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))
11 fveq2 6890 . . . . . . 7 (π‘Ÿ = 𝑠 β†’ (π΄β€˜π‘Ÿ) = (π΄β€˜π‘ ))
12 oveq2 7419 . . . . . . 7 (π‘Ÿ = 𝑠 β†’ ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))β†‘π‘Ÿ) = ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑠))
1311, 12oveq12d 7429 . . . . . 6 (π‘Ÿ = 𝑠 β†’ ((π΄β€˜π‘Ÿ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))β†‘π‘Ÿ)) = ((π΄β€˜π‘ ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑠)))
1413fveq2d 6894 . . . . 5 (π‘Ÿ = 𝑠 β†’ (absβ€˜((π΄β€˜π‘Ÿ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))β†‘π‘Ÿ))) = (absβ€˜((π΄β€˜π‘ ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑠))))
1514cbvsumv 15646 . . . 4 Ξ£π‘Ÿ ∈ ((inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) + 1)...𝑁)(absβ€˜((π΄β€˜π‘Ÿ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))β†‘π‘Ÿ))) = Σ𝑠 ∈ ((inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) + 1)...𝑁)(absβ€˜((π΄β€˜π‘ ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑠)))
1615oveq1i 7421 . . 3 (Ξ£π‘Ÿ ∈ ((inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) + 1)...𝑁)(absβ€˜((π΄β€˜π‘Ÿ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))β†‘π‘Ÿ))) + 1) = (Σ𝑠 ∈ ((inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) + 1)...𝑁)(absβ€˜((π΄β€˜π‘ ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑠))) + 1)
1716oveq2i 7422 . 2 ((absβ€˜(πΉβ€˜0)) / (Ξ£π‘Ÿ ∈ ((inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) + 1)...𝑁)(absβ€˜((π΄β€˜π‘Ÿ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))β†‘π‘Ÿ))) + 1)) = ((absβ€˜(πΉβ€˜0)) / (Σ𝑠 ∈ ((inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) + 1)...𝑁)(absβ€˜((π΄β€˜π‘ ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑠))) + 1))
18 eqid 2730 . 2 if(1 ≀ ((absβ€˜(πΉβ€˜0)) / (Ξ£π‘Ÿ ∈ ((inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) + 1)...𝑁)(absβ€˜((π΄β€˜π‘Ÿ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))β†‘π‘Ÿ))) + 1)), 1, ((absβ€˜(πΉβ€˜0)) / (Ξ£π‘Ÿ ∈ ((inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) + 1)...𝑁)(absβ€˜((π΄β€˜π‘Ÿ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))β†‘π‘Ÿ))) + 1))) = if(1 ≀ ((absβ€˜(πΉβ€˜0)) / (Ξ£π‘Ÿ ∈ ((inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) + 1)...𝑁)(absβ€˜((π΄β€˜π‘Ÿ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))β†‘π‘Ÿ))) + 1)), 1, ((absβ€˜(πΉβ€˜0)) / (Ξ£π‘Ÿ ∈ ((inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < ) + 1)...𝑁)(absβ€˜((π΄β€˜π‘Ÿ) Β· ((-((πΉβ€˜0) / (π΄β€˜inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))↑𝑐(1 / inf({π‘˜ ∈ β„• ∣ (π΄β€˜π‘˜) β‰  0}, ℝ, < )))β†‘π‘Ÿ))) + 1)))
191, 2, 3, 4, 5, 9, 10, 17, 18ftalem5 26817 1 (πœ‘ β†’ βˆƒπ‘₯ ∈ β„‚ (absβ€˜(πΉβ€˜π‘₯)) < (absβ€˜(πΉβ€˜0)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆƒwrex 3068  {crab 3430  ifcif 4527   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  infcinf 9438  β„‚cc 11110  β„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   Β· cmul 11117   < clt 11252   ≀ cle 11253  -cneg 11449   / cdiv 11875  β„•cn 12216  ...cfz 13488  β†‘cexp 14031  abscabs 15185  Ξ£csu 15636  Polycply 25933  coeffccoe 25935  degcdgr 25936  β†‘𝑐ccxp 26300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-fac 14238  df-bc 14267  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-ef 16015  df-sin 16017  df-cos 16018  df-pi 16020  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-0p 25419  df-limc 25615  df-dv 25616  df-ply 25937  df-coe 25939  df-dgr 25940  df-log 26301  df-cxp 26302
This theorem is referenced by:  ftalem7  26819
  Copyright terms: Public domain W3C validator