MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem6 Structured version   Visualization version   GIF version

Theorem ftalem6 27057
Description: Lemma for fta 27059: Discharge the auxiliary variables in ftalem5 27056. (Contributed by Mario Carneiro, 20-Sep-2014.) (Proof shortened by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem6.5 (𝜑 → (𝐹‘0) ≠ 0)
Assertion
Ref Expression
ftalem6 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem ftalem6
Dummy variables 𝑘 𝑛 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftalem.1 . 2 𝐴 = (coeff‘𝐹)
2 ftalem.2 . 2 𝑁 = (deg‘𝐹)
3 ftalem.3 . 2 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . 2 (𝜑𝑁 ∈ ℕ)
5 ftalem6.5 . 2 (𝜑 → (𝐹‘0) ≠ 0)
6 fveq2 6886 . . . . 5 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
76neeq1d 2990 . . . 4 (𝑘 = 𝑛 → ((𝐴𝑘) ≠ 0 ↔ (𝐴𝑛) ≠ 0))
87cbvrabv 3430 . . 3 {𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0} = {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}
98infeq1i 9500 . 2 inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
10 eqid 2734 . 2 (-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ))) = (-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))
11 fveq2 6886 . . . . . . 7 (𝑟 = 𝑠 → (𝐴𝑟) = (𝐴𝑠))
12 oveq2 7421 . . . . . . 7 (𝑟 = 𝑠 → ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑟) = ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑠))
1311, 12oveq12d 7431 . . . . . 6 (𝑟 = 𝑠 → ((𝐴𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑟)) = ((𝐴𝑠) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑠)))
1413fveq2d 6890 . . . . 5 (𝑟 = 𝑠 → (abs‘((𝐴𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑟))) = (abs‘((𝐴𝑠) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑠))))
1514cbvsumv 15714 . . . 4 Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑟))) = Σ𝑠 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴𝑠) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑠)))
1615oveq1i 7423 . . 3 𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1) = (Σ𝑠 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴𝑠) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑠))) + 1)
1716oveq2i 7424 . 2 ((abs‘(𝐹‘0)) / (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1)) = ((abs‘(𝐹‘0)) / (Σ𝑠 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴𝑠) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑠))) + 1))
18 eqid 2734 . 2 if(1 ≤ ((abs‘(𝐹‘0)) / (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1)), 1, ((abs‘(𝐹‘0)) / (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1))) = if(1 ≤ ((abs‘(𝐹‘0)) / (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1)), 1, ((abs‘(𝐹‘0)) / (Σ𝑟 ∈ ((inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < ) + 1)...𝑁)(abs‘((𝐴𝑟) · ((-((𝐹‘0) / (𝐴‘inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑐(1 / inf({𝑘 ∈ ℕ ∣ (𝐴𝑘) ≠ 0}, ℝ, < )))↑𝑟))) + 1)))
191, 2, 3, 4, 5, 9, 10, 17, 18ftalem5 27056 1 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  ifcif 4505   class class class wbr 5123  cfv 6541  (class class class)co 7413  infcinf 9463  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142   < clt 11277  cle 11278  -cneg 11475   / cdiv 11902  cn 12248  ...cfz 13529  cexp 14084  abscabs 15255  Σcsu 15704  Polycply 26159  coeffccoe 26161  degcdgr 26162  𝑐ccxp 26533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14295  df-bc 14324  df-hash 14352  df-shft 15088  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-limsup 15489  df-clim 15506  df-rlim 15507  df-sum 15705  df-ef 16085  df-sin 16087  df-cos 16088  df-pi 16090  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-lp 23090  df-perf 23091  df-cn 23181  df-cnp 23182  df-haus 23269  df-tx 23516  df-hmeo 23709  df-fil 23800  df-fm 23892  df-flim 23893  df-flf 23894  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840  df-0p 25641  df-limc 25837  df-dv 25838  df-ply 26163  df-coe 26165  df-dgr 26166  df-log 26534  df-cxp 26535
This theorem is referenced by:  ftalem7  27058
  Copyright terms: Public domain W3C validator