Step | Hyp | Ref
| Expression |
1 | | ftalem.1 |
. 2
β’ π΄ = (coeffβπΉ) |
2 | | ftalem.2 |
. 2
β’ π = (degβπΉ) |
3 | | ftalem.3 |
. 2
β’ (π β πΉ β (Polyβπ)) |
4 | | ftalem.4 |
. 2
β’ (π β π β β) |
5 | | ftalem6.5 |
. 2
β’ (π β (πΉβ0) β 0) |
6 | | fveq2 6890 |
. . . . 5
β’ (π = π β (π΄βπ) = (π΄βπ)) |
7 | 6 | neeq1d 2998 |
. . . 4
β’ (π = π β ((π΄βπ) β 0 β (π΄βπ) β 0)) |
8 | 7 | cbvrabv 3440 |
. . 3
β’ {π β β β£ (π΄βπ) β 0} = {π β β β£ (π΄βπ) β 0} |
9 | 8 | infeq1i 9475 |
. 2
β’
inf({π β
β β£ (π΄βπ) β 0}, β, < ) = inf({π β β β£ (π΄βπ) β 0}, β, < ) |
10 | | eqid 2730 |
. 2
β’ (-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < ))) = (-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < ))) |
11 | | fveq2 6890 |
. . . . . . 7
β’ (π = π β (π΄βπ) = (π΄βπ )) |
12 | | oveq2 7419 |
. . . . . . 7
β’ (π = π β ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ) = ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ )) |
13 | 11, 12 | oveq12d 7429 |
. . . . . 6
β’ (π = π β ((π΄βπ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ)) = ((π΄βπ ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ ))) |
14 | 13 | fveq2d 6894 |
. . . . 5
β’ (π = π β (absβ((π΄βπ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ))) = (absβ((π΄βπ ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ )))) |
15 | 14 | cbvsumv 15646 |
. . . 4
β’
Ξ£π β
((inf({π β β
β£ (π΄βπ) β 0}, β, < ) +
1)...π)(absβ((π΄βπ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ))) = Ξ£π β ((inf({π β β β£ (π΄βπ) β 0}, β, < ) + 1)...π)(absβ((π΄βπ ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ ))) |
16 | 15 | oveq1i 7421 |
. . 3
β’
(Ξ£π β
((inf({π β β
β£ (π΄βπ) β 0}, β, < ) +
1)...π)(absβ((π΄βπ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ))) + 1) = (Ξ£π β ((inf({π β β β£ (π΄βπ) β 0}, β, < ) + 1)...π)(absβ((π΄βπ ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ ))) + 1) |
17 | 16 | oveq2i 7422 |
. 2
β’
((absβ(πΉβ0)) / (Ξ£π β ((inf({π β β β£ (π΄βπ) β 0}, β, < ) + 1)...π)(absβ((π΄βπ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ))) + 1)) = ((absβ(πΉβ0)) / (Ξ£π β ((inf({π β β β£ (π΄βπ) β 0}, β, < ) + 1)...π)(absβ((π΄βπ ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ ))) + 1)) |
18 | | eqid 2730 |
. 2
β’ if(1 β€
((absβ(πΉβ0)) /
(Ξ£π β
((inf({π β β
β£ (π΄βπ) β 0}, β, < ) +
1)...π)(absβ((π΄βπ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ))) + 1)), 1, ((absβ(πΉβ0)) / (Ξ£π β ((inf({π β β β£ (π΄βπ) β 0}, β, < ) + 1)...π)(absβ((π΄βπ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ))) + 1))) = if(1 β€
((absβ(πΉβ0)) /
(Ξ£π β
((inf({π β β
β£ (π΄βπ) β 0}, β, < ) +
1)...π)(absβ((π΄βπ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ))) + 1)), 1, ((absβ(πΉβ0)) / (Ξ£π β ((inf({π β β β£ (π΄βπ) β 0}, β, < ) + 1)...π)(absβ((π΄βπ) Β· ((-((πΉβ0) / (π΄βinf({π β β β£ (π΄βπ) β 0}, β, <
)))βπ(1 / inf({π β β β£ (π΄βπ) β 0}, β, < )))βπ))) + 1))) |
19 | 1, 2, 3, 4, 5, 9, 10, 17, 18 | ftalem5 26817 |
1
β’ (π β βπ₯ β β (absβ(πΉβπ₯)) < (absβ(πΉβ0))) |