| Step | Hyp | Ref
| Expression |
| 1 | | ovnval2.1 |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 2 | 1 | ovnval 46537 |
. 2
⊢ (𝜑 → (voln*‘𝑋) = (𝑦 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)))) |
| 3 | | biidd 262 |
. . . 4
⊢ (𝑦 = 𝐴 → (𝑋 = ∅ ↔ 𝑋 = ∅)) |
| 4 | | sseq1 3989 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (𝑦 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘))) |
| 5 | 4 | anbi1d 631 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
| 6 | 5 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝑦 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
| 7 | 6 | rabbidv 3428 |
. . . . . 6
⊢ (𝑦 = 𝐴 → {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
| 8 | | ovnval2.3 |
. . . . . 6
⊢ 𝑀 = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
| 9 | 7, 8 | eqtr4di 2789 |
. . . . 5
⊢ (𝑦 = 𝐴 → {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = 𝑀) |
| 10 | 9 | infeq1d 9495 |
. . . 4
⊢ (𝑦 = 𝐴 → inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ) =
inf(𝑀, ℝ*,
< )) |
| 11 | 3, 10 | ifbieq2d 4532 |
. . 3
⊢ (𝑦 = 𝐴 → if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) =
if(𝑋 = ∅, 0,
inf(𝑀, ℝ*,
< ))) |
| 12 | 11 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑦 = 𝐴) → if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) =
if(𝑋 = ∅, 0,
inf(𝑀, ℝ*,
< ))) |
| 13 | | ovnval2.2 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
| 14 | | ovexd 7445 |
. . . . 5
⊢ (𝜑 → (ℝ
↑m 𝑋)
∈ V) |
| 15 | 14, 13 | ssexd 5299 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
| 16 | | elpwg 4583 |
. . . 4
⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (ℝ
↑m 𝑋)
↔ 𝐴 ⊆ (ℝ
↑m 𝑋))) |
| 17 | 15, 16 | syl 17 |
. . 3
⊢ (𝜑 → (𝐴 ∈ 𝒫 (ℝ
↑m 𝑋)
↔ 𝐴 ⊆ (ℝ
↑m 𝑋))) |
| 18 | 13, 17 | mpbird 257 |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝒫 (ℝ
↑m 𝑋)) |
| 19 | | c0ex 11234 |
. . . 4
⊢ 0 ∈
V |
| 20 | 19 | a1i 11 |
. . 3
⊢ (𝜑 → 0 ∈
V) |
| 21 | 8 | infeq1i 9496 |
. . . 4
⊢ inf(𝑀, ℝ*, < ) =
inf({𝑧 ∈
ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
) |
| 22 | | xrltso 13162 |
. . . . . 6
⊢ < Or
ℝ* |
| 23 | 22 | infex 9512 |
. . . . 5
⊢
inf({𝑧 ∈
ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ) ∈
V |
| 24 | 23 | a1i 11 |
. . . 4
⊢ (𝜑 → inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ) ∈
V) |
| 25 | 21, 24 | eqeltrid 2839 |
. . 3
⊢ (𝜑 → inf(𝑀, ℝ*, < ) ∈
V) |
| 26 | 20, 25 | ifcld 4552 |
. 2
⊢ (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) ∈
V) |
| 27 | 2, 12, 18, 26 | fvmptd 6998 |
1
⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, <
))) |