Step | Hyp | Ref
| Expression |
1 | | aks4d1.1 |
. . . 4
β’ (π β π β
(β€β₯β3)) |
2 | | oveq2 7366 |
. . . . . . 7
β’ (π = π β (πβπ) = (πβπ)) |
3 | 2 | oveq1d 7373 |
. . . . . 6
β’ (π = π β ((πβπ) β 1) = ((πβπ) β 1)) |
4 | 3 | cbvprodv 15804 |
. . . . 5
β’
βπ β
(1...(ββ((2 logb π)β2)))((πβπ) β 1) = βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1) |
5 | 4 | oveq2i 7369 |
. . . 4
β’ ((πβ(ββ(2
logb π΅)))
Β· βπ β
(1...(ββ((2 logb π)β2)))((πβπ) β 1)) = ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1)) |
6 | | aks4d1.2 |
. . . 4
β’ π΅ = (ββ((2
logb π)β5)) |
7 | | id 22 |
. . . . . . . 8
β’ (β = π β β = π) |
8 | | oveq2 7366 |
. . . . . . . . . . . 12
β’ (π = π β (πβπ) = (πβπ)) |
9 | 8 | oveq1d 7373 |
. . . . . . . . . . 11
β’ (π = π β ((πβπ) β 1) = ((πβπ) β 1)) |
10 | 9 | cbvprodv 15804 |
. . . . . . . . . 10
β’
βπ β
(1...(ββ((2 logb π)β2)))((πβπ) β 1) = βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1) |
11 | 10 | oveq2i 7369 |
. . . . . . . . 9
β’ ((πβ(ββ(2
logb π΅)))
Β· βπ β
(1...(ββ((2 logb π)β2)))((πβπ) β 1)) = ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1)) |
12 | 11 | a1i 11 |
. . . . . . . 8
β’ (β = π β ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1)) = ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))) |
13 | 7, 12 | breq12d 5119 |
. . . . . . 7
β’ (β = π β (β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1)) β π β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1)))) |
14 | 13 | notbid 318 |
. . . . . 6
β’ (β = π β (Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1)) β Β¬ π β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1)))) |
15 | 14 | cbvrabv 3416 |
. . . . 5
β’ {β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))} = {π β (1...π΅) β£ Β¬ π β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))} |
16 | 15 | infeq1i 9419 |
. . . 4
β’
inf({β β
(1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ) = inf({π β (1...π΅) β£ Β¬ π β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, <
) |
17 | 1, 5, 6, 16 | aks4d1p4 40582 |
. . 3
β’ (π β (inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ) β
(1...π΅) β§ Β¬
inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ) β₯
((πβ(ββ(2
logb π΅)))
Β· βπ β
(1...(ββ((2 logb π)β2)))((πβπ) β 1)))) |
18 | 17 | simpld 496 |
. 2
β’ (π β inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ) β
(1...π΅)) |
19 | | oveq2 7366 |
. . . . 5
β’ (π = inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ) β (π gcd π) = (π gcd inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, <
))) |
20 | 19 | adantl 483 |
. . . 4
β’ ((π β§ π = inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < )) β
(π gcd π) = (π gcd inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, <
))) |
21 | 20 | eqeq1d 2735 |
. . 3
β’ ((π β§ π = inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < )) β
((π gcd π) = 1 β (π gcd inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < )) =
1)) |
22 | | fveq2 6843 |
. . . . . 6
β’ (π = inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ) β
(odβ€βπ) = (odβ€βinf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, <
))) |
23 | 22 | adantl 483 |
. . . . 5
β’ ((π β§ π = inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < )) β
(odβ€βπ) = (odβ€βinf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, <
))) |
24 | 23 | fveq1d 6845 |
. . . 4
β’ ((π β§ π = inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < )) β
((odβ€βπ)βπ) = ((odβ€βinf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ))βπ)) |
25 | 24 | breq2d 5118 |
. . 3
β’ ((π β§ π = inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < )) β (((2
logb π)β2)
< ((odβ€βπ)βπ) β ((2 logb π)β2) <
((odβ€βinf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ))βπ))) |
26 | 21, 25 | anbi12d 632 |
. 2
β’ ((π β§ π = inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < )) β
(((π gcd π) = 1 β§ ((2 logb π)β2) <
((odβ€βπ)βπ)) β ((π gcd inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < )) = 1 β§
((2 logb π)β2) <
((odβ€βinf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ))βπ)))) |
27 | 1, 5, 6, 16 | aks4d1p8 40590 |
. . 3
β’ (π β (π gcd inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < )) =
1) |
28 | 1, 5, 6, 16 | aks4d1p9 40591 |
. . 3
β’ (π β ((2 logb π)β2) <
((odβ€βinf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ))βπ)) |
29 | 27, 28 | jca 513 |
. 2
β’ (π β ((π gcd inf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < )) = 1 β§
((2 logb π)β2) <
((odβ€βinf({β β (1...π΅) β£ Β¬ β β₯ ((πβ(ββ(2 logb
π΅))) Β· βπ β (1...(ββ((2
logb π)β2)))((πβπ) β 1))}, β, < ))βπ))) |
30 | 18, 26, 29 | rspcedvd 3582 |
1
β’ (π β βπ β (1...π΅)((π gcd π) = 1 β§ ((2 logb π)β2) <
((odβ€βπ)βπ))) |