Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1 Structured version   Visualization version   GIF version

Theorem aks4d1 42032
Description: Lemma 4.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf, existence of a polynomially bounded number by the digit size of 𝑁 that asserts the polynomial subspace that we need to search to guarantee that 𝑁 is prime. Eventually we want to show that the polynomial searching space is bounded by degree 𝐵. (Contributed by metakunt, 14-Nov-2024.)
Hypotheses
Ref Expression
aks4d1.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1.2 𝐵 = (⌈‘((2 logb 𝑁)↑5))
Assertion
Ref Expression
aks4d1 (𝜑 → ∃𝑟 ∈ (1...𝐵)((𝑁 gcd 𝑟) = 1 ∧ ((2 logb 𝑁)↑2) < ((od𝑟)‘𝑁)))
Distinct variable groups:   𝐵,𝑟   𝑁,𝑟   𝜑,𝑟

Proof of Theorem aks4d1
Dummy variables 𝑎 𝑘 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks4d1.1 . . . 4 (𝜑𝑁 ∈ (ℤ‘3))
2 oveq2 7433 . . . . . . 7 (𝑏 = 𝑎 → (𝑁𝑏) = (𝑁𝑎))
32oveq1d 7440 . . . . . 6 (𝑏 = 𝑎 → ((𝑁𝑏) − 1) = ((𝑁𝑎) − 1))
43cbvprodv 15936 . . . . 5 𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1) = ∏𝑎 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑎) − 1)
54oveq2i 7436 . . . 4 ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑎 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑎) − 1))
6 aks4d1.2 . . . 4 𝐵 = (⌈‘((2 logb 𝑁)↑5))
7 id 22 . . . . . . . 8 ( = 𝑘 = 𝑘)
8 oveq2 7433 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝑁𝑐) = (𝑁𝑏))
98oveq1d 7440 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((𝑁𝑐) − 1) = ((𝑁𝑏) − 1))
109cbvprodv 15936 . . . . . . . . . 10 𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1) = ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1)
1110oveq2i 7436 . . . . . . . . 9 ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))
1211a1i 11 . . . . . . . 8 ( = 𝑘 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1)))
137, 12breq12d 5162 . . . . . . 7 ( = 𝑘 → ( ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1)) ↔ 𝑘 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))))
1413notbid 318 . . . . . 6 ( = 𝑘 → (¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1)) ↔ ¬ 𝑘 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))))
1514cbvrabv 3443 . . . . 5 { ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))} = {𝑘 ∈ (1...𝐵) ∣ ¬ 𝑘 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))}
1615infeq1i 9509 . . . 4 inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) = inf({𝑘 ∈ (1...𝐵) ∣ ¬ 𝑘 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))}, ℝ, < )
171, 5, 6, 16aks4d1p4 42022 . . 3 (𝜑 → (inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) ∈ (1...𝐵) ∧ ¬ inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))))
1817simpld 494 . 2 (𝜑 → inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) ∈ (1...𝐵))
19 oveq2 7433 . . . . 5 (𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) → (𝑁 gcd 𝑟) = (𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )))
2019adantl 481 . . . 4 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → (𝑁 gcd 𝑟) = (𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )))
2120eqeq1d 2735 . . 3 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → ((𝑁 gcd 𝑟) = 1 ↔ (𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) = 1))
22 fveq2 6901 . . . . . 6 (𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) → (od𝑟) = (od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )))
2322adantl 481 . . . . 5 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → (od𝑟) = (od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )))
2423fveq1d 6903 . . . 4 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → ((od𝑟)‘𝑁) = ((od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ))‘𝑁))
2524breq2d 5161 . . 3 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → (((2 logb 𝑁)↑2) < ((od𝑟)‘𝑁) ↔ ((2 logb 𝑁)↑2) < ((od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ))‘𝑁)))
2621, 25anbi12d 631 . 2 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → (((𝑁 gcd 𝑟) = 1 ∧ ((2 logb 𝑁)↑2) < ((od𝑟)‘𝑁)) ↔ ((𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) = 1 ∧ ((2 logb 𝑁)↑2) < ((od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ))‘𝑁))))
271, 5, 6, 16aks4d1p8 42030 . . 3 (𝜑 → (𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) = 1)
281, 5, 6, 16aks4d1p9 42031 . . 3 (𝜑 → ((2 logb 𝑁)↑2) < ((od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ))‘𝑁))
2927, 28jca 511 . 2 (𝜑 → ((𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) = 1 ∧ ((2 logb 𝑁)↑2) < ((od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ))‘𝑁)))
3018, 26, 29rspcedvd 3624 1 (𝜑 → ∃𝑟 ∈ (1...𝐵)((𝑁 gcd 𝑟) = 1 ∧ ((2 logb 𝑁)↑2) < ((od𝑟)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1535  wcel 2104  wrex 3066  {crab 3432   class class class wbr 5149  cfv 6558  (class class class)co 7425  infcinf 9472  cr 11145  1c1 11147   · cmul 11151   < clt 11286  cmin 11483  2c2 12312  3c3 12313  5c5 12315  cuz 12869  ...cfz 13537  cfl 13816  cceil 13817  cexp 14088  cprod 15925  cdvds 16276   gcd cgcd 16517  odcodz 16786   logb clogb 26803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-inf2 9672  ax-cc 10466  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-symdif 4259  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4915  df-int 4954  df-iun 5000  df-iin 5001  df-disj 5117  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-se 5636  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6317  df-ord 6383  df-on 6384  df-lim 6385  df-suc 6386  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-isom 6567  df-riota 7381  df-ov 7428  df-oprab 7429  df-mpo 7430  df-of 7691  df-ofr 7692  df-om 7881  df-1st 8007  df-2nd 8008  df-supp 8179  df-frecs 8299  df-wrecs 8330  df-recs 8404  df-rdg 8443  df-1o 8499  df-2o 8500  df-oadd 8503  df-omul 8504  df-er 8738  df-map 8861  df-pm 8862  df-ixp 8931  df-en 8979  df-dom 8980  df-sdom 8981  df-fin 8982  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-acn 9973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11485  df-neg 11486  df-div 11912  df-nn 12258  df-2 12320  df-3 12321  df-4 12322  df-5 12323  df-6 12324  df-7 12325  df-8 12326  df-9 12327  df-n0 12518  df-xnn0 12591  df-z 12605  df-dec 12725  df-uz 12870  df-q 12982  df-rp 13026  df-xneg 13145  df-xadd 13146  df-xmul 13147  df-ioo 13381  df-ioc 13382  df-ico 13383  df-icc 13384  df-fz 13538  df-fzo 13682  df-fl 13818  df-ceil 13819  df-mod 13896  df-seq 14029  df-exp 14089  df-fac 14299  df-bc 14328  df-hash 14356  df-shft 15092  df-cj 15124  df-re 15125  df-im 15126  df-sqrt 15260  df-abs 15261  df-limsup 15493  df-clim 15510  df-rlim 15511  df-sum 15709  df-prod 15926  df-ef 16089  df-e 16090  df-sin 16091  df-cos 16092  df-pi 16094  df-dvds 16277  df-gcd 16518  df-lcm 16613  df-lcmf 16614  df-prm 16695  df-odz 16788  df-phi 16789  df-pc 16860  df-struct 17170  df-sets 17187  df-slot 17205  df-ndx 17217  df-base 17235  df-ress 17264  df-plusg 17300  df-mulr 17301  df-starv 17302  df-sca 17303  df-vsca 17304  df-ip 17305  df-tset 17306  df-ple 17307  df-ds 17309  df-unif 17310  df-hom 17311  df-cco 17312  df-rest 17458  df-topn 17459  df-0g 17477  df-gsum 17478  df-topgen 17479  df-pt 17480  df-prds 17483  df-xrs 17538  df-qtop 17543  df-imas 17544  df-xps 17546  df-mre 17620  df-mrc 17621  df-acs 17623  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18795  df-mulg 19084  df-cntz 19333  df-cmn 19800  df-psmet 21355  df-xmet 21356  df-met 21357  df-bl 21358  df-mopn 21359  df-fbas 21360  df-fg 21361  df-cnfld 21364  df-top 22897  df-topon 22914  df-topsp 22936  df-bases 22950  df-cld 23024  df-ntr 23025  df-cls 23026  df-nei 23103  df-lp 23141  df-perf 23142  df-cn 23232  df-cnp 23233  df-haus 23320  df-cmp 23392  df-tx 23567  df-hmeo 23760  df-fil 23851  df-fm 23943  df-flim 23944  df-flf 23945  df-xms 24327  df-ms 24328  df-tms 24329  df-cncf 24899  df-ovol 25494  df-vol 25495  df-mbf 25649  df-itg1 25650  df-itg2 25651  df-ibl 25652  df-itg 25653  df-0p 25700  df-limc 25897  df-dv 25898  df-log 26594  df-cxp 26595  df-logb 26804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator