Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1 Structured version   Visualization version   GIF version

Theorem aks4d1 41549
Description: Lemma 4.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf, existence of a polynomially bounded number by the digit size of 𝑁 that asserts the polynomial subspace that we need to search to guarantee that 𝑁 is prime. Eventually we want to show that the polynomial searching space is bounded by degree 𝐵. (Contributed by metakunt, 14-Nov-2024.)
Hypotheses
Ref Expression
aks4d1.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1.2 𝐵 = (⌈‘((2 logb 𝑁)↑5))
Assertion
Ref Expression
aks4d1 (𝜑 → ∃𝑟 ∈ (1...𝐵)((𝑁 gcd 𝑟) = 1 ∧ ((2 logb 𝑁)↑2) < ((od𝑟)‘𝑁)))
Distinct variable groups:   𝐵,𝑟   𝑁,𝑟   𝜑,𝑟

Proof of Theorem aks4d1
Dummy variables 𝑎 𝑘 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks4d1.1 . . . 4 (𝜑𝑁 ∈ (ℤ‘3))
2 oveq2 7422 . . . . . . 7 (𝑏 = 𝑎 → (𝑁𝑏) = (𝑁𝑎))
32oveq1d 7429 . . . . . 6 (𝑏 = 𝑎 → ((𝑁𝑏) − 1) = ((𝑁𝑎) − 1))
43cbvprodv 15886 . . . . 5 𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1) = ∏𝑎 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑎) − 1)
54oveq2i 7425 . . . 4 ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑎 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑎) − 1))
6 aks4d1.2 . . . 4 𝐵 = (⌈‘((2 logb 𝑁)↑5))
7 id 22 . . . . . . . 8 ( = 𝑘 = 𝑘)
8 oveq2 7422 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝑁𝑐) = (𝑁𝑏))
98oveq1d 7429 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((𝑁𝑐) − 1) = ((𝑁𝑏) − 1))
109cbvprodv 15886 . . . . . . . . . 10 𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1) = ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1)
1110oveq2i 7425 . . . . . . . . 9 ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))
1211a1i 11 . . . . . . . 8 ( = 𝑘 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1)))
137, 12breq12d 5155 . . . . . . 7 ( = 𝑘 → ( ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1)) ↔ 𝑘 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))))
1413notbid 318 . . . . . 6 ( = 𝑘 → (¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1)) ↔ ¬ 𝑘 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))))
1514cbvrabv 3437 . . . . 5 { ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))} = {𝑘 ∈ (1...𝐵) ∣ ¬ 𝑘 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))}
1615infeq1i 9495 . . . 4 inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) = inf({𝑘 ∈ (1...𝐵) ∣ ¬ 𝑘 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))}, ℝ, < )
171, 5, 6, 16aks4d1p4 41539 . . 3 (𝜑 → (inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) ∈ (1...𝐵) ∧ ¬ inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑏 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑏) − 1))))
1817simpld 494 . 2 (𝜑 → inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) ∈ (1...𝐵))
19 oveq2 7422 . . . . 5 (𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) → (𝑁 gcd 𝑟) = (𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )))
2019adantl 481 . . . 4 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → (𝑁 gcd 𝑟) = (𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )))
2120eqeq1d 2729 . . 3 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → ((𝑁 gcd 𝑟) = 1 ↔ (𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) = 1))
22 fveq2 6891 . . . . . 6 (𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ) → (od𝑟) = (od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )))
2322adantl 481 . . . . 5 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → (od𝑟) = (od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )))
2423fveq1d 6893 . . . 4 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → ((od𝑟)‘𝑁) = ((od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ))‘𝑁))
2524breq2d 5154 . . 3 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → (((2 logb 𝑁)↑2) < ((od𝑟)‘𝑁) ↔ ((2 logb 𝑁)↑2) < ((od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ))‘𝑁)))
2621, 25anbi12d 630 . 2 ((𝜑𝑟 = inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) → (((𝑁 gcd 𝑟) = 1 ∧ ((2 logb 𝑁)↑2) < ((od𝑟)‘𝑁)) ↔ ((𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) = 1 ∧ ((2 logb 𝑁)↑2) < ((od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ))‘𝑁))))
271, 5, 6, 16aks4d1p8 41547 . . 3 (𝜑 → (𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) = 1)
281, 5, 6, 16aks4d1p9 41548 . . 3 (𝜑 → ((2 logb 𝑁)↑2) < ((od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ))‘𝑁))
2927, 28jca 511 . 2 (𝜑 → ((𝑁 gcd inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < )) = 1 ∧ ((2 logb 𝑁)↑2) < ((od‘inf({ ∈ (1...𝐵) ∣ ¬ ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑐 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑐) − 1))}, ℝ, < ))‘𝑁)))
3018, 26, 29rspcedvd 3609 1 (𝜑 → ∃𝑟 ∈ (1...𝐵)((𝑁 gcd 𝑟) = 1 ∧ ((2 logb 𝑁)↑2) < ((od𝑟)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wrex 3065  {crab 3427   class class class wbr 5142  cfv 6542  (class class class)co 7414  infcinf 9458  cr 11131  1c1 11133   · cmul 11137   < clt 11272  cmin 11468  2c2 12291  3c3 12292  5c5 12294  cuz 12846  ...cfz 13510  cfl 13781  cceil 13782  cexp 14052  cprod 15875  cdvds 16224   gcd cgcd 16462  odcodz 16725   logb clogb 26689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cc 10452  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-symdif 4238  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-xnn0 12569  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ioc 13355  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-ceil 13784  df-mod 13861  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-sum 15659  df-prod 15876  df-ef 16037  df-e 16038  df-sin 16039  df-cos 16040  df-pi 16042  df-dvds 16225  df-gcd 16463  df-lcm 16554  df-lcmf 16555  df-prm 16636  df-odz 16727  df-phi 16728  df-pc 16799  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-haus 23212  df-cmp 23284  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-ovol 25386  df-vol 25387  df-mbf 25541  df-itg1 25542  df-itg2 25543  df-ibl 25544  df-itg 25545  df-0p 25592  df-limc 25788  df-dv 25789  df-log 26483  df-cxp 26484  df-logb 26690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator