| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitrrg | Structured version Visualization version GIF version | ||
| Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| unitrrg.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| unitrrg.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitrrg | ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | unitrrg.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitcl 20286 | . . . . 5 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑅)) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑅)) |
| 5 | oveq2 7349 | . . . . . 6 ⊢ ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅))) | |
| 6 | eqid 2730 | . . . . . . . . . . 11 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 7 | eqid 2730 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 8 | eqid 2730 | . . . . . . . . . . 11 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 9 | 2, 6, 7, 8 | unitlinv 20304 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) |
| 10 | 9 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) |
| 11 | 10 | oveq1d 7356 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = ((1r‘𝑅)(.r‘𝑅)𝑦)) |
| 12 | simpll 766 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
| 13 | 2, 6, 1 | ringinvcl 20303 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
| 14 | 13 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
| 15 | 4 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
| 16 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) | |
| 17 | 1, 7 | ringass 20164 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ (((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
| 18 | 12, 14, 15, 16, 17 | syl13anc 1374 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
| 19 | 1, 7, 8 | ringlidm 20180 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
| 20 | 19 | adantlr 715 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
| 21 | 11, 18, 20 | 3eqtr3d 2773 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = 𝑦) |
| 22 | eqid 2730 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 23 | 1, 7, 22 | ringrz 20205 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 24 | 12, 14, 23 | syl2anc 584 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 25 | 21, 24 | eqeq12d 2746 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) ↔ 𝑦 = (0g‘𝑅))) |
| 26 | 5, 25 | imbitrid 244 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))) |
| 27 | 26 | ralrimiva 3122 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))) |
| 28 | unitrrg.e | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 29 | 28, 1, 7, 22 | isrrg 20606 | . . . 4 ⊢ (𝑥 ∈ 𝐸 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅)))) |
| 30 | 4, 27, 29 | sylanbrc 583 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐸) |
| 31 | 30 | ex 412 | . 2 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐸)) |
| 32 | 31 | ssrdv 3938 | 1 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ⊆ wss 3900 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 .rcmulr 17154 0gc0g 17335 1rcur 20092 Ringcrg 20144 Unitcui 20266 invrcinvr 20298 RLRegcrlreg 20599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-rlreg 20602 |
| This theorem is referenced by: drngdomn 20657 znrrg 21495 deg1invg 26031 ply1divalg 26063 uc1pmon1p 26077 fta1glem1 26093 ig1peu 26100 1rrg 33239 mon1psubm 43211 |
| Copyright terms: Public domain | W3C validator |