![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitrrg | Structured version Visualization version GIF version |
Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
Ref | Expression |
---|---|
unitrrg.e | ⊢ 𝐸 = (RLReg‘𝑅) |
unitrrg.u | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
unitrrg | ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2824 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | unitrrg.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | unitcl 19012 | . . . . 5 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑅)) |
4 | 3 | adantl 475 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑅)) |
5 | oveq2 6912 | . . . . . 6 ⊢ ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅))) | |
6 | eqid 2824 | . . . . . . . . . . 11 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
7 | eqid 2824 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
8 | eqid 2824 | . . . . . . . . . . 11 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
9 | 2, 6, 7, 8 | unitlinv 19030 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) |
10 | 9 | adantr 474 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) |
11 | 10 | oveq1d 6919 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = ((1r‘𝑅)(.r‘𝑅)𝑦)) |
12 | simpll 785 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
13 | 2, 6, 1 | ringinvcl 19029 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
14 | 13 | adantr 474 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
15 | 4 | adantr 474 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
16 | simpr 479 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) | |
17 | 1, 7 | ringass 18917 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ (((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
18 | 12, 14, 15, 16, 17 | syl13anc 1497 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
19 | 1, 7, 8 | ringlidm 18924 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
20 | 19 | adantlr 708 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
21 | 11, 18, 20 | 3eqtr3d 2868 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = 𝑦) |
22 | eqid 2824 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
23 | 1, 7, 22 | ringrz 18941 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
24 | 12, 14, 23 | syl2anc 581 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
25 | 21, 24 | eqeq12d 2839 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) ↔ 𝑦 = (0g‘𝑅))) |
26 | 5, 25 | syl5ib 236 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))) |
27 | 26 | ralrimiva 3174 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))) |
28 | unitrrg.e | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
29 | 28, 1, 7, 22 | isrrg 19648 | . . . 4 ⊢ (𝑥 ∈ 𝐸 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅)))) |
30 | 4, 27, 29 | sylanbrc 580 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐸) |
31 | 30 | ex 403 | . 2 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐸)) |
32 | 31 | ssrdv 3832 | 1 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3116 ⊆ wss 3797 ‘cfv 6122 (class class class)co 6904 Basecbs 16221 .rcmulr 16305 0gc0g 16452 1rcur 18854 Ringcrg 18900 Unitcui 18992 invrcinvr 19024 RLRegcrlreg 19639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-tpos 7616 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-2 11413 df-3 11414 df-ndx 16224 df-slot 16225 df-base 16227 df-sets 16228 df-ress 16229 df-plusg 16317 df-mulr 16318 df-0g 16454 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-grp 17778 df-minusg 17779 df-mgp 18843 df-ur 18855 df-ring 18902 df-oppr 18976 df-dvdsr 18994 df-unit 18995 df-invr 19025 df-rlreg 19643 |
This theorem is referenced by: drngdomn 19663 znrrg 20272 deg1invg 24264 ply1divalg 24295 uc1pmon1p 24309 fta1glem1 24323 ig1peu 24329 mon1psubm 38626 |
Copyright terms: Public domain | W3C validator |