| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitrrg | Structured version Visualization version GIF version | ||
| Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| unitrrg.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| unitrrg.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitrrg | ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | unitrrg.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitcl 20291 | . . . . 5 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑅)) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑅)) |
| 5 | oveq2 7398 | . . . . . 6 ⊢ ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅))) | |
| 6 | eqid 2730 | . . . . . . . . . . 11 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 7 | eqid 2730 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 8 | eqid 2730 | . . . . . . . . . . 11 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 9 | 2, 6, 7, 8 | unitlinv 20309 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) |
| 10 | 9 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) |
| 11 | 10 | oveq1d 7405 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = ((1r‘𝑅)(.r‘𝑅)𝑦)) |
| 12 | simpll 766 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
| 13 | 2, 6, 1 | ringinvcl 20308 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
| 14 | 13 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
| 15 | 4 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
| 16 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) | |
| 17 | 1, 7 | ringass 20169 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ (((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
| 18 | 12, 14, 15, 16, 17 | syl13anc 1374 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
| 19 | 1, 7, 8 | ringlidm 20185 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
| 20 | 19 | adantlr 715 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
| 21 | 11, 18, 20 | 3eqtr3d 2773 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = 𝑦) |
| 22 | eqid 2730 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 23 | 1, 7, 22 | ringrz 20210 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 24 | 12, 14, 23 | syl2anc 584 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 25 | 21, 24 | eqeq12d 2746 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) ↔ 𝑦 = (0g‘𝑅))) |
| 26 | 5, 25 | imbitrid 244 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))) |
| 27 | 26 | ralrimiva 3126 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))) |
| 28 | unitrrg.e | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 29 | 28, 1, 7, 22 | isrrg 20614 | . . . 4 ⊢ (𝑥 ∈ 𝐸 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅)))) |
| 30 | 4, 27, 29 | sylanbrc 583 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐸) |
| 31 | 30 | ex 412 | . 2 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐸)) |
| 32 | 31 | ssrdv 3955 | 1 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 0gc0g 17409 1rcur 20097 Ringcrg 20149 Unitcui 20271 invrcinvr 20303 RLRegcrlreg 20607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-rlreg 20610 |
| This theorem is referenced by: drngdomn 20665 znrrg 21482 deg1invg 26018 ply1divalg 26050 uc1pmon1p 26064 fta1glem1 26080 ig1peu 26087 1rrg 33240 mon1psubm 43195 |
| Copyright terms: Public domain | W3C validator |