|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > unitrrg | Structured version Visualization version GIF version | ||
| Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| unitrrg.e | ⊢ 𝐸 = (RLReg‘𝑅) | 
| unitrrg.u | ⊢ 𝑈 = (Unit‘𝑅) | 
| Ref | Expression | 
|---|---|
| unitrrg | ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | unitrrg.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitcl 20375 | . . . . 5 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑅)) | 
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑅)) | 
| 5 | oveq2 7439 | . . . . . 6 ⊢ ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅))) | |
| 6 | eqid 2737 | . . . . . . . . . . 11 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 7 | eqid 2737 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 8 | eqid 2737 | . . . . . . . . . . 11 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 9 | 2, 6, 7, 8 | unitlinv 20393 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) | 
| 10 | 9 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) | 
| 11 | 10 | oveq1d 7446 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = ((1r‘𝑅)(.r‘𝑅)𝑦)) | 
| 12 | simpll 767 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
| 13 | 2, 6, 1 | ringinvcl 20392 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) | 
| 14 | 13 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) | 
| 15 | 4 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) | 
| 16 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) | |
| 17 | 1, 7 | ringass 20250 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ (((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) | 
| 18 | 12, 14, 15, 16, 17 | syl13anc 1374 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) | 
| 19 | 1, 7, 8 | ringlidm 20266 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) | 
| 20 | 19 | adantlr 715 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) | 
| 21 | 11, 18, 20 | 3eqtr3d 2785 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = 𝑦) | 
| 22 | eqid 2737 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 23 | 1, 7, 22 | ringrz 20291 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) | 
| 24 | 12, 14, 23 | syl2anc 584 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) | 
| 25 | 21, 24 | eqeq12d 2753 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) ↔ 𝑦 = (0g‘𝑅))) | 
| 26 | 5, 25 | imbitrid 244 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))) | 
| 27 | 26 | ralrimiva 3146 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))) | 
| 28 | unitrrg.e | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 29 | 28, 1, 7, 22 | isrrg 20698 | . . . 4 ⊢ (𝑥 ∈ 𝐸 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅)))) | 
| 30 | 4, 27, 29 | sylanbrc 583 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐸) | 
| 31 | 30 | ex 412 | . 2 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐸)) | 
| 32 | 31 | ssrdv 3989 | 1 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 0gc0g 17484 1rcur 20178 Ringcrg 20230 Unitcui 20355 invrcinvr 20387 RLRegcrlreg 20691 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-rlreg 20694 | 
| This theorem is referenced by: drngdomn 20749 znrrg 21584 deg1invg 26145 ply1divalg 26177 uc1pmon1p 26191 fta1glem1 26207 ig1peu 26214 1rrg 33286 mon1psubm 43211 | 
| Copyright terms: Public domain | W3C validator |