| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitrrg | Structured version Visualization version GIF version | ||
| Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| unitrrg.e | ⊢ 𝐸 = (RLReg‘𝑅) |
| unitrrg.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| unitrrg | ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | unitrrg.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitcl 20303 | . . . . 5 ⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑅)) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑅)) |
| 5 | oveq2 7363 | . . . . . 6 ⊢ ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅))) | |
| 6 | eqid 2733 | . . . . . . . . . . 11 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 7 | eqid 2733 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 8 | eqid 2733 | . . . . . . . . . . 11 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 9 | 2, 6, 7, 8 | unitlinv 20321 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) |
| 10 | 9 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) |
| 11 | 10 | oveq1d 7370 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = ((1r‘𝑅)(.r‘𝑅)𝑦)) |
| 12 | simpll 766 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
| 13 | 2, 6, 1 | ringinvcl 20320 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
| 14 | 13 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
| 15 | 4 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
| 16 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) | |
| 17 | 1, 7 | ringass 20181 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ (((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
| 18 | 12, 14, 15, 16, 17 | syl13anc 1374 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)(.r‘𝑅)𝑦) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦))) |
| 19 | 1, 7, 8 | ringlidm 20197 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
| 20 | 19 | adantlr 715 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)𝑦) = 𝑦) |
| 21 | 11, 18, 20 | 3eqtr3d 2776 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = 𝑦) |
| 22 | eqid 2733 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 23 | 1, 7, 22 | ringrz 20222 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 24 | 12, 14, 23 | syl2anc 584 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 25 | 21, 24 | eqeq12d 2749 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((((invr‘𝑅)‘𝑥)(.r‘𝑅)(𝑥(.r‘𝑅)𝑦)) = (((invr‘𝑅)‘𝑥)(.r‘𝑅)(0g‘𝑅)) ↔ 𝑦 = (0g‘𝑅))) |
| 26 | 5, 25 | imbitrid 244 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))) |
| 27 | 26 | ralrimiva 3126 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅))) |
| 28 | unitrrg.e | . . . . 5 ⊢ 𝐸 = (RLReg‘𝑅) | |
| 29 | 28, 1, 7, 22 | isrrg 20623 | . . . 4 ⊢ (𝑥 ∈ 𝐸 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) = (0g‘𝑅) → 𝑦 = (0g‘𝑅)))) |
| 30 | 4, 27, 29 | sylanbrc 583 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐸) |
| 31 | 30 | ex 412 | . 2 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐸)) |
| 32 | 31 | ssrdv 3937 | 1 ⊢ (𝑅 ∈ Ring → 𝑈 ⊆ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ⊆ wss 3899 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 .rcmulr 17172 0gc0g 17353 1rcur 20109 Ringcrg 20161 Unitcui 20283 invrcinvr 20315 RLRegcrlreg 20616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-rlreg 20619 |
| This theorem is referenced by: drngdomn 20674 znrrg 21512 deg1invg 26048 ply1divalg 26080 uc1pmon1p 26094 fta1glem1 26110 ig1peu 26117 1rrg 33260 mon1psubm 43306 |
| Copyright terms: Public domain | W3C validator |