MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3ds Structured version   Visualization version   GIF version

Theorem isfin3ds 9740
Description: Property of a III-finite set (descending sequence version). (Contributed by Mario Carneiro, 16-May-2015.)
Hypothesis
Ref Expression
isfin3ds.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
isfin3ds (𝐴𝑉 → (𝐴𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
Distinct variable group:   𝑎,𝑏,𝑓,𝑔,𝑥,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑓,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑓,𝑔,𝑎,𝑏)

Proof of Theorem isfin3ds
StepHypRef Expression
1 suceq 6254 . . . . . . . . 9 (𝑏 = 𝑥 → suc 𝑏 = suc 𝑥)
21fveq2d 6671 . . . . . . . 8 (𝑏 = 𝑥 → (𝑎‘suc 𝑏) = (𝑎‘suc 𝑥))
3 fveq2 6667 . . . . . . . 8 (𝑏 = 𝑥 → (𝑎𝑏) = (𝑎𝑥))
42, 3sseq12d 4004 . . . . . . 7 (𝑏 = 𝑥 → ((𝑎‘suc 𝑏) ⊆ (𝑎𝑏) ↔ (𝑎‘suc 𝑥) ⊆ (𝑎𝑥)))
54cbvralvw 3455 . . . . . 6 (∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) ↔ ∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥))
6 fveq1 6666 . . . . . . . 8 (𝑎 = 𝑓 → (𝑎‘suc 𝑥) = (𝑓‘suc 𝑥))
7 fveq1 6666 . . . . . . . 8 (𝑎 = 𝑓 → (𝑎𝑥) = (𝑓𝑥))
86, 7sseq12d 4004 . . . . . . 7 (𝑎 = 𝑓 → ((𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ (𝑓‘suc 𝑥) ⊆ (𝑓𝑥)))
98ralbidv 3202 . . . . . 6 (𝑎 = 𝑓 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ ∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥)))
105, 9syl5bb 284 . . . . 5 (𝑎 = 𝑓 → (∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) ↔ ∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥)))
11 rneq 5805 . . . . . . 7 (𝑎 = 𝑓 → ran 𝑎 = ran 𝑓)
1211inteqd 4879 . . . . . 6 (𝑎 = 𝑓 ran 𝑎 = ran 𝑓)
1312, 11eleq12d 2912 . . . . 5 (𝑎 = 𝑓 → ( ran 𝑎 ∈ ran 𝑎 ran 𝑓 ∈ ran 𝑓))
1410, 13imbi12d 346 . . . 4 (𝑎 = 𝑓 → ((∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1514cbvralvw 3455 . . 3 (∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑓 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
16 pweq 4545 . . . . 5 (𝑔 = 𝐴 → 𝒫 𝑔 = 𝒫 𝐴)
1716oveq1d 7163 . . . 4 (𝑔 = 𝐴 → (𝒫 𝑔m ω) = (𝒫 𝐴m ω))
1817raleqdv 3421 . . 3 (𝑔 = 𝐴 → (∀𝑓 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓) ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1915, 18syl5bb 284 . 2 (𝑔 = 𝐴 → (∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
20 isfin3ds.f . 2 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
2119, 20elab2g 3673 1 (𝐴𝑉 → (𝐴𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1530  wcel 2107  {cab 2804  wral 3143  wss 3940  𝒫 cpw 4542   cint 4874  ran crn 5555  suc csuc 6191  cfv 6352  (class class class)co 7148  ωcom 7568  m cmap 8396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-int 4875  df-br 5064  df-opab 5126  df-cnv 5562  df-dm 5564  df-rn 5565  df-suc 6195  df-iota 6312  df-fv 6360  df-ov 7151
This theorem is referenced by:  ssfin3ds  9741  fin23lem17  9749  fin23lem39  9761  fin23lem40  9762  isf32lem12  9775  isfin3-3  9779
  Copyright terms: Public domain W3C validator