Proof of Theorem isfin3ds
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | suceq 6449 | . . . . . . . . 9
⊢ (𝑏 = 𝑥 → suc 𝑏 = suc 𝑥) | 
| 2 | 1 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑏 = 𝑥 → (𝑎‘suc 𝑏) = (𝑎‘suc 𝑥)) | 
| 3 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑏 = 𝑥 → (𝑎‘𝑏) = (𝑎‘𝑥)) | 
| 4 | 2, 3 | sseq12d 4016 | . . . . . . 7
⊢ (𝑏 = 𝑥 → ((𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) ↔ (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥))) | 
| 5 | 4 | cbvralvw 3236 | . . . . . 6
⊢
(∀𝑏 ∈
ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) ↔ ∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥)) | 
| 6 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑎 = 𝑓 → (𝑎‘suc 𝑥) = (𝑓‘suc 𝑥)) | 
| 7 |  | fveq1 6904 | . . . . . . . 8
⊢ (𝑎 = 𝑓 → (𝑎‘𝑥) = (𝑓‘𝑥)) | 
| 8 | 6, 7 | sseq12d 4016 | . . . . . . 7
⊢ (𝑎 = 𝑓 → ((𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥))) | 
| 9 | 8 | ralbidv 3177 | . . . . . 6
⊢ (𝑎 = 𝑓 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) ↔ ∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥))) | 
| 10 | 5, 9 | bitrid 283 | . . . . 5
⊢ (𝑎 = 𝑓 → (∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) ↔ ∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥))) | 
| 11 |  | rneq 5946 | . . . . . . 7
⊢ (𝑎 = 𝑓 → ran 𝑎 = ran 𝑓) | 
| 12 | 11 | inteqd 4950 | . . . . . 6
⊢ (𝑎 = 𝑓 → ∩ ran
𝑎 = ∩ ran 𝑓) | 
| 13 | 12, 11 | eleq12d 2834 | . . . . 5
⊢ (𝑎 = 𝑓 → (∩ ran
𝑎 ∈ ran 𝑎 ↔ ∩ ran 𝑓 ∈ ran 𝑓)) | 
| 14 | 10, 13 | imbi12d 344 | . . . 4
⊢ (𝑎 = 𝑓 → ((∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran
𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran
𝑓 ∈ ran 𝑓))) | 
| 15 | 14 | cbvralvw 3236 | . . 3
⊢
(∀𝑎 ∈
(𝒫 𝑔
↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran
𝑎 ∈ ran 𝑎) ↔ ∀𝑓 ∈ (𝒫 𝑔 ↑m
ω)(∀𝑥 ∈
ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran
𝑓 ∈ ran 𝑓)) | 
| 16 |  | pweq 4613 | . . . . 5
⊢ (𝑔 = 𝐴 → 𝒫 𝑔 = 𝒫 𝐴) | 
| 17 | 16 | oveq1d 7447 | . . . 4
⊢ (𝑔 = 𝐴 → (𝒫 𝑔 ↑m ω) = (𝒫
𝐴 ↑m
ω)) | 
| 18 | 17 | raleqdv 3325 | . . 3
⊢ (𝑔 = 𝐴 → (∀𝑓 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran
𝑓 ∈ ran 𝑓) ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m
ω)(∀𝑥 ∈
ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran
𝑓 ∈ ran 𝑓))) | 
| 19 | 15, 18 | bitrid 283 | . 2
⊢ (𝑔 = 𝐴 → (∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran
𝑎 ∈ ran 𝑎) ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m
ω)(∀𝑥 ∈
ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran
𝑓 ∈ ran 𝑓))) | 
| 20 |  | isfin3ds.f | . 2
⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran
𝑎 ∈ ran 𝑎)} | 
| 21 | 19, 20 | elab2g 3679 | 1
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran
𝑓 ∈ ran 𝑓))) |