![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssfin3ds | Structured version Visualization version GIF version |
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014.) |
Ref | Expression |
---|---|
isfin3ds.f | ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran 𝑎 ∈ ran 𝑎)} |
Ref | Expression |
---|---|
ssfin3ds | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5384 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → 𝒫 𝐴 ∈ V) | |
2 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
3 | 2 | sspwd 4618 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
4 | mapss 8928 | . . . 4 ⊢ ((𝒫 𝐴 ∈ V ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴) → (𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω)) | |
5 | 1, 3, 4 | syl2an2r 685 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω)) |
6 | isfin3ds.f | . . . . . 6 ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
7 | 6 | isfin3ds 10367 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
8 | 7 | ibi 267 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
10 | ssralv 4064 | . . 3 ⊢ ((𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω) → (∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓) → ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) | |
11 | 5, 9, 10 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
12 | ssexg 5329 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐹) → 𝐵 ∈ V) | |
13 | 12 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
14 | 6 | isfin3ds 10367 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
16 | 11, 15 | mpbird 257 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 ∩ cint 4951 ran crn 5690 suc csuc 6388 ‘cfv 6563 (class class class)co 7431 ωcom 7887 ↑m cmap 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 |
This theorem is referenced by: fin23lem31 10381 |
Copyright terms: Public domain | W3C validator |