MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin3ds Structured version   Visualization version   GIF version

Theorem ssfin3ds 10086
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014.)
Hypothesis
Ref Expression
isfin3ds.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
ssfin3ds ((𝐴𝐹𝐵𝐴) → 𝐵𝐹)
Distinct variable groups:   𝑎,𝑏,𝑔,𝐴   𝐵,𝑎,𝑏,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎,𝑏)

Proof of Theorem ssfin3ds
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5301 . . . 4 (𝐴𝐹 → 𝒫 𝐴 ∈ V)
2 simpr 485 . . . . 5 ((𝐴𝐹𝐵𝐴) → 𝐵𝐴)
32sspwd 4548 . . . 4 ((𝐴𝐹𝐵𝐴) → 𝒫 𝐵 ⊆ 𝒫 𝐴)
4 mapss 8677 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴) → (𝒫 𝐵m ω) ⊆ (𝒫 𝐴m ω))
51, 3, 4syl2an2r 682 . . 3 ((𝐴𝐹𝐵𝐴) → (𝒫 𝐵m ω) ⊆ (𝒫 𝐴m ω))
6 isfin3ds.f . . . . . 6 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
76isfin3ds 10085 . . . . 5 (𝐴𝐹 → (𝐴𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
87ibi 266 . . . 4 (𝐴𝐹 → ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
98adantr 481 . . 3 ((𝐴𝐹𝐵𝐴) → ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
10 ssralv 3987 . . 3 ((𝒫 𝐵m ω) ⊆ (𝒫 𝐴m ω) → (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓) → ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
115, 9, 10sylc 65 . 2 ((𝐴𝐹𝐵𝐴) → ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
12 ssexg 5247 . . . 4 ((𝐵𝐴𝐴𝐹) → 𝐵 ∈ V)
1312ancoms 459 . . 3 ((𝐴𝐹𝐵𝐴) → 𝐵 ∈ V)
146isfin3ds 10085 . . 3 (𝐵 ∈ V → (𝐵𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1513, 14syl 17 . 2 ((𝐴𝐹𝐵𝐴) → (𝐵𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1611, 15mpbird 256 1 ((𝐴𝐹𝐵𝐴) → 𝐵𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  Vcvv 3432  wss 3887  𝒫 cpw 4533   cint 4879  ran crn 5590  suc csuc 6268  cfv 6433  (class class class)co 7275  ωcom 7712  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by:  fin23lem31  10099
  Copyright terms: Public domain W3C validator