MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin3ds Structured version   Visualization version   GIF version

Theorem ssfin3ds 10224
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014.)
Hypothesis
Ref Expression
isfin3ds.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
ssfin3ds ((𝐴𝐹𝐵𝐴) → 𝐵𝐹)
Distinct variable groups:   𝑎,𝑏,𝑔,𝐴   𝐵,𝑎,𝑏,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎,𝑏)

Proof of Theorem ssfin3ds
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5317 . . . 4 (𝐴𝐹 → 𝒫 𝐴 ∈ V)
2 simpr 484 . . . . 5 ((𝐴𝐹𝐵𝐴) → 𝐵𝐴)
32sspwd 4564 . . . 4 ((𝐴𝐹𝐵𝐴) → 𝒫 𝐵 ⊆ 𝒫 𝐴)
4 mapss 8816 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴) → (𝒫 𝐵m ω) ⊆ (𝒫 𝐴m ω))
51, 3, 4syl2an2r 685 . . 3 ((𝐴𝐹𝐵𝐴) → (𝒫 𝐵m ω) ⊆ (𝒫 𝐴m ω))
6 isfin3ds.f . . . . . 6 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
76isfin3ds 10223 . . . . 5 (𝐴𝐹 → (𝐴𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
87ibi 267 . . . 4 (𝐴𝐹 → ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
98adantr 480 . . 3 ((𝐴𝐹𝐵𝐴) → ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
10 ssralv 4004 . . 3 ((𝒫 𝐵m ω) ⊆ (𝒫 𝐴m ω) → (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓) → ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
115, 9, 10sylc 65 . 2 ((𝐴𝐹𝐵𝐴) → ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
12 ssexg 5262 . . . 4 ((𝐵𝐴𝐴𝐹) → 𝐵 ∈ V)
1312ancoms 458 . . 3 ((𝐴𝐹𝐵𝐴) → 𝐵 ∈ V)
146isfin3ds 10223 . . 3 (𝐵 ∈ V → (𝐵𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1513, 14syl 17 . 2 ((𝐴𝐹𝐵𝐴) → (𝐵𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1611, 15mpbird 257 1 ((𝐴𝐹𝐵𝐴) → 𝐵𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3436  wss 3903  𝒫 cpw 4551   cint 4896  ran crn 5620  suc csuc 6309  cfv 6482  (class class class)co 7349  ωcom 7799  m cmap 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755
This theorem is referenced by:  fin23lem31  10237
  Copyright terms: Public domain W3C validator