MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin3ds Structured version   Visualization version   GIF version

Theorem ssfin3ds 10224
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014.)
Hypothesis
Ref Expression
isfin3ds.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
ssfin3ds ((𝐴𝐹𝐵𝐴) → 𝐵𝐹)
Distinct variable groups:   𝑎,𝑏,𝑔,𝐴   𝐵,𝑎,𝑏,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎,𝑏)

Proof of Theorem ssfin3ds
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5331 . . . 4 (𝐴𝐹 → 𝒫 𝐴 ∈ V)
2 simpr 485 . . . . 5 ((𝐴𝐹𝐵𝐴) → 𝐵𝐴)
32sspwd 4571 . . . 4 ((𝐴𝐹𝐵𝐴) → 𝒫 𝐵 ⊆ 𝒫 𝐴)
4 mapss 8785 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴) → (𝒫 𝐵m ω) ⊆ (𝒫 𝐴m ω))
51, 3, 4syl2an2r 683 . . 3 ((𝐴𝐹𝐵𝐴) → (𝒫 𝐵m ω) ⊆ (𝒫 𝐴m ω))
6 isfin3ds.f . . . . . 6 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
76isfin3ds 10223 . . . . 5 (𝐴𝐹 → (𝐴𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
87ibi 266 . . . 4 (𝐴𝐹 → ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
98adantr 481 . . 3 ((𝐴𝐹𝐵𝐴) → ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
10 ssralv 4008 . . 3 ((𝒫 𝐵m ω) ⊆ (𝒫 𝐴m ω) → (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓) → ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
115, 9, 10sylc 65 . 2 ((𝐴𝐹𝐵𝐴) → ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
12 ssexg 5278 . . . 4 ((𝐵𝐴𝐴𝐹) → 𝐵 ∈ V)
1312ancoms 459 . . 3 ((𝐴𝐹𝐵𝐴) → 𝐵 ∈ V)
146isfin3ds 10223 . . 3 (𝐵 ∈ V → (𝐵𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1513, 14syl 17 . 2 ((𝐴𝐹𝐵𝐴) → (𝐵𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1611, 15mpbird 256 1 ((𝐴𝐹𝐵𝐴) → 𝐵𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2713  wral 3062  Vcvv 3443  wss 3908  𝒫 cpw 4558   cint 4905  ran crn 5632  suc csuc 6317  cfv 6493  (class class class)co 7351  ωcom 7794  m cmap 8723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-1st 7913  df-2nd 7914  df-map 8725
This theorem is referenced by:  fin23lem31  10237
  Copyright terms: Public domain W3C validator