| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssfin3ds | Structured version Visualization version GIF version | ||
| Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014.) |
| Ref | Expression |
|---|---|
| isfin3ds.f | ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran 𝑎 ∈ ran 𝑎)} |
| Ref | Expression |
|---|---|
| ssfin3ds | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 5328 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → 𝒫 𝐴 ∈ V) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 3 | 2 | sspwd 4572 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
| 4 | mapss 8839 | . . . 4 ⊢ ((𝒫 𝐴 ∈ V ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴) → (𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω)) | |
| 5 | 1, 3, 4 | syl2an2r 685 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω)) |
| 6 | isfin3ds.f | . . . . . 6 ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
| 7 | 6 | isfin3ds 10258 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
| 8 | 7 | ibi 267 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
| 10 | ssralv 4012 | . . 3 ⊢ ((𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω) → (∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓) → ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) | |
| 11 | 5, 9, 10 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
| 12 | ssexg 5273 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐹) → 𝐵 ∈ V) | |
| 13 | 12 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
| 14 | 6 | isfin3ds 10258 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
| 15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
| 16 | 11, 15 | mpbird 257 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 ∩ cint 4906 ran crn 5632 suc csuc 6322 ‘cfv 6499 (class class class)co 7369 ωcom 7822 ↑m cmap 8776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 |
| This theorem is referenced by: fin23lem31 10272 |
| Copyright terms: Public domain | W3C validator |