![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssfin3ds | Structured version Visualization version GIF version |
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014.) |
Ref | Expression |
---|---|
isfin3ds.f | ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran 𝑎 ∈ ran 𝑎)} |
Ref | Expression |
---|---|
ssfin3ds | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5396 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → 𝒫 𝐴 ∈ V) | |
2 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
3 | 2 | sspwd 4635 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
4 | mapss 8947 | . . . 4 ⊢ ((𝒫 𝐴 ∈ V ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴) → (𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω)) | |
5 | 1, 3, 4 | syl2an2r 684 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω)) |
6 | isfin3ds.f | . . . . . 6 ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
7 | 6 | isfin3ds 10398 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
8 | 7 | ibi 267 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
10 | ssralv 4077 | . . 3 ⊢ ((𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω) → (∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓) → ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) | |
11 | 5, 9, 10 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
12 | ssexg 5341 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐹) → 𝐵 ∈ V) | |
13 | 12 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
14 | 6 | isfin3ds 10398 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
16 | 11, 15 | mpbird 257 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∩ cint 4970 ran crn 5701 suc csuc 6397 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: fin23lem31 10412 |
Copyright terms: Public domain | W3C validator |