Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssfin3ds | Structured version Visualization version GIF version |
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014.) |
Ref | Expression |
---|---|
isfin3ds.f | ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran 𝑎 ∈ ran 𝑎)} |
Ref | Expression |
---|---|
ssfin3ds | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5301 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → 𝒫 𝐴 ∈ V) | |
2 | simpr 485 | . . . . 5 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
3 | 2 | sspwd 4548 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
4 | mapss 8677 | . . . 4 ⊢ ((𝒫 𝐴 ∈ V ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴) → (𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω)) | |
5 | 1, 3, 4 | syl2an2r 682 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω)) |
6 | isfin3ds.f | . . . . . 6 ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
7 | 6 | isfin3ds 10085 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
8 | 7 | ibi 266 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
9 | 8 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
10 | ssralv 3987 | . . 3 ⊢ ((𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω) → (∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓) → ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) | |
11 | 5, 9, 10 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
12 | ssexg 5247 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐹) → 𝐵 ∈ V) | |
13 | 12 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
14 | 6 | isfin3ds 10085 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
16 | 11, 15 | mpbird 256 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 ∩ cint 4879 ran crn 5590 suc csuc 6268 ‘cfv 6433 (class class class)co 7275 ωcom 7712 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: fin23lem31 10099 |
Copyright terms: Public domain | W3C validator |