Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssfin3ds | Structured version Visualization version GIF version |
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014.) |
Ref | Expression |
---|---|
isfin3ds.f | ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran 𝑎 ∈ ran 𝑎)} |
Ref | Expression |
---|---|
ssfin3ds | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5251 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → 𝒫 𝐴 ∈ V) | |
2 | simpr 488 | . . . . 5 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
3 | 2 | sspwd 4512 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
4 | mapss 8484 | . . . 4 ⊢ ((𝒫 𝐴 ∈ V ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴) → (𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω)) | |
5 | 1, 3, 4 | syl2an2r 684 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω)) |
6 | isfin3ds.f | . . . . . 6 ⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎‘𝑏) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
7 | 6 | isfin3ds 9802 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
8 | 7 | ibi 270 | . . . 4 ⊢ (𝐴 ∈ 𝐹 → ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
9 | 8 | adantr 484 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → ∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
10 | ssralv 3960 | . . 3 ⊢ ((𝒫 𝐵 ↑m ω) ⊆ (𝒫 𝐴 ↑m ω) → (∀𝑓 ∈ (𝒫 𝐴 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓) → ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) | |
11 | 5, 9, 10 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓)) |
12 | ssexg 5197 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐹) → 𝐵 ∈ V) | |
13 | 12 | ancoms 462 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
14 | 6 | isfin3ds 9802 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐵 ↑m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓‘𝑥) → ∩ ran 𝑓 ∈ ran 𝑓))) |
16 | 11, 15 | mpbird 260 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ∀wral 3070 Vcvv 3409 ⊆ wss 3860 𝒫 cpw 4497 ∩ cint 4841 ran crn 5529 suc csuc 6176 ‘cfv 6340 (class class class)co 7156 ωcom 7585 ↑m cmap 8422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-map 8424 |
This theorem is referenced by: fin23lem31 9816 |
Copyright terms: Public domain | W3C validator |