MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem17 Structured version   Visualization version   GIF version

Theorem fin23lem17 10329
Description: Lemma for fin23 10380. By ? Fin3DS ? , π‘ˆ achieves its minimum (𝑋 in the synopsis above, but we will not be assigning a symbol here). TODO: Fix comment; math symbol Fin3DS does not exist. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fin23lem.a π‘ˆ = seqΟ‰((𝑖 ∈ Ο‰, 𝑒 ∈ V ↦ if(((π‘‘β€˜π‘–) ∩ 𝑒) = βˆ…, 𝑒, ((π‘‘β€˜π‘–) ∩ 𝑒))), βˆͺ ran 𝑑)
fin23lem17.f 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
Assertion
Ref Expression
fin23lem17 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ ∩ ran π‘ˆ ∈ ran π‘ˆ)
Distinct variable groups:   𝑔,𝑖,𝑑,𝑒,π‘₯,π‘Ž   𝐹,π‘Ž,𝑑   𝑉,π‘Ž   π‘₯,π‘Ž   π‘ˆ,π‘Ž,𝑖,𝑒   𝑔,π‘Ž
Allowed substitution hints:   π‘ˆ(π‘₯,𝑑,𝑔)   𝐹(π‘₯,𝑒,𝑔,𝑖)   𝑉(π‘₯,𝑒,𝑑,𝑔,𝑖)

Proof of Theorem fin23lem17
Dummy variables 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin23lem.a . . . 4 π‘ˆ = seqΟ‰((𝑖 ∈ Ο‰, 𝑒 ∈ V ↦ if(((π‘‘β€˜π‘–) ∩ 𝑒) = βˆ…, 𝑒, ((π‘‘β€˜π‘–) ∩ 𝑒))), βˆͺ ran 𝑑)
21fin23lem13 10323 . . 3 (𝑐 ∈ Ο‰ β†’ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘))
32rgen 3063 . 2 βˆ€π‘ ∈ Ο‰ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘)
4 fveq1 6887 . . . . . 6 (𝑏 = π‘ˆ β†’ (π‘β€˜suc 𝑐) = (π‘ˆβ€˜suc 𝑐))
5 fveq1 6887 . . . . . 6 (𝑏 = π‘ˆ β†’ (π‘β€˜π‘) = (π‘ˆβ€˜π‘))
64, 5sseq12d 4014 . . . . 5 (𝑏 = π‘ˆ β†’ ((π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) ↔ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘)))
76ralbidv 3177 . . . 4 (𝑏 = π‘ˆ β†’ (βˆ€π‘ ∈ Ο‰ (π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) ↔ βˆ€π‘ ∈ Ο‰ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘)))
8 rneq 5933 . . . . . 6 (𝑏 = π‘ˆ β†’ ran 𝑏 = ran π‘ˆ)
98inteqd 4954 . . . . 5 (𝑏 = π‘ˆ β†’ ∩ ran 𝑏 = ∩ ran π‘ˆ)
109, 8eleq12d 2827 . . . 4 (𝑏 = π‘ˆ β†’ (∩ ran 𝑏 ∈ ran 𝑏 ↔ ∩ ran π‘ˆ ∈ ran π‘ˆ))
117, 10imbi12d 344 . . 3 (𝑏 = π‘ˆ β†’ ((βˆ€π‘ ∈ Ο‰ (π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) β†’ ∩ ran 𝑏 ∈ ran 𝑏) ↔ (βˆ€π‘ ∈ Ο‰ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘) β†’ ∩ ran π‘ˆ ∈ ran π‘ˆ)))
12 fin23lem17.f . . . . . 6 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
1312isfin3ds 10320 . . . . 5 (βˆͺ ran 𝑑 ∈ 𝐹 β†’ (βˆͺ ran 𝑑 ∈ 𝐹 ↔ βˆ€π‘ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰)(βˆ€π‘ ∈ Ο‰ (π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) β†’ ∩ ran 𝑏 ∈ ran 𝑏)))
1413ibi 266 . . . 4 (βˆͺ ran 𝑑 ∈ 𝐹 β†’ βˆ€π‘ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰)(βˆ€π‘ ∈ Ο‰ (π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) β†’ ∩ ran 𝑏 ∈ ran 𝑏))
1514adantr 481 . . 3 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ βˆ€π‘ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰)(βˆ€π‘ ∈ Ο‰ (π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) β†’ ∩ ran 𝑏 ∈ ran 𝑏))
161fnseqom 8451 . . . . . 6 π‘ˆ Fn Ο‰
17 dffn3 6727 . . . . . 6 (π‘ˆ Fn Ο‰ ↔ π‘ˆ:Ο‰βŸΆran π‘ˆ)
1816, 17mpbi 229 . . . . 5 π‘ˆ:Ο‰βŸΆran π‘ˆ
19 pwuni 4948 . . . . . 6 ran π‘ˆ βŠ† 𝒫 βˆͺ ran π‘ˆ
201fin23lem16 10326 . . . . . . 7 βˆͺ ran π‘ˆ = βˆͺ ran 𝑑
2120pweqi 4617 . . . . . 6 𝒫 βˆͺ ran π‘ˆ = 𝒫 βˆͺ ran 𝑑
2219, 21sseqtri 4017 . . . . 5 ran π‘ˆ βŠ† 𝒫 βˆͺ ran 𝑑
23 fss 6731 . . . . 5 ((π‘ˆ:Ο‰βŸΆran π‘ˆ ∧ ran π‘ˆ βŠ† 𝒫 βˆͺ ran 𝑑) β†’ π‘ˆ:Ο‰βŸΆπ’« βˆͺ ran 𝑑)
2418, 22, 23mp2an 690 . . . 4 π‘ˆ:Ο‰βŸΆπ’« βˆͺ ran 𝑑
25 vex 3478 . . . . . . . 8 𝑑 ∈ V
2625rnex 7899 . . . . . . 7 ran 𝑑 ∈ V
2726uniex 7727 . . . . . 6 βˆͺ ran 𝑑 ∈ V
2827pwex 5377 . . . . 5 𝒫 βˆͺ ran 𝑑 ∈ V
29 f1f 6784 . . . . . . 7 (𝑑:ω–1-1→𝑉 β†’ 𝑑:Ο‰βŸΆπ‘‰)
30 dmfex 7894 . . . . . . 7 ((𝑑 ∈ V ∧ 𝑑:Ο‰βŸΆπ‘‰) β†’ Ο‰ ∈ V)
3125, 29, 30sylancr 587 . . . . . 6 (𝑑:ω–1-1→𝑉 β†’ Ο‰ ∈ V)
3231adantl 482 . . . . 5 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ Ο‰ ∈ V)
33 elmapg 8829 . . . . 5 ((𝒫 βˆͺ ran 𝑑 ∈ V ∧ Ο‰ ∈ V) β†’ (π‘ˆ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰) ↔ π‘ˆ:Ο‰βŸΆπ’« βˆͺ ran 𝑑))
3428, 32, 33sylancr 587 . . . 4 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ (π‘ˆ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰) ↔ π‘ˆ:Ο‰βŸΆπ’« βˆͺ ran 𝑑))
3524, 34mpbiri 257 . . 3 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ π‘ˆ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰))
3611, 15, 35rspcdva 3613 . 2 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ (βˆ€π‘ ∈ Ο‰ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘) β†’ ∩ ran π‘ˆ ∈ ran π‘ˆ))
373, 36mpi 20 1 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ ∩ ran π‘ˆ ∈ ran π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  ifcif 4527  π’« cpw 4601  βˆͺ cuni 4907  βˆ© cint 4949  ran crn 5676  suc csuc 6363   Fn wfn 6535  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Ο‰com 7851  seqΟ‰cseqom 8443   ↑m cmap 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-seqom 8444  df-map 8818
This theorem is referenced by:  fin23lem21  10330
  Copyright terms: Public domain W3C validator