MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem17 Structured version   Visualization version   GIF version

Theorem fin23lem17 10333
Description: Lemma for fin23 10384. By ? Fin3DS ? , π‘ˆ achieves its minimum (𝑋 in the synopsis above, but we will not be assigning a symbol here). TODO: Fix comment; math symbol Fin3DS does not exist. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fin23lem.a π‘ˆ = seqΟ‰((𝑖 ∈ Ο‰, 𝑒 ∈ V ↦ if(((π‘‘β€˜π‘–) ∩ 𝑒) = βˆ…, 𝑒, ((π‘‘β€˜π‘–) ∩ 𝑒))), βˆͺ ran 𝑑)
fin23lem17.f 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
Assertion
Ref Expression
fin23lem17 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ ∩ ran π‘ˆ ∈ ran π‘ˆ)
Distinct variable groups:   𝑔,𝑖,𝑑,𝑒,π‘₯,π‘Ž   𝐹,π‘Ž,𝑑   𝑉,π‘Ž   π‘₯,π‘Ž   π‘ˆ,π‘Ž,𝑖,𝑒   𝑔,π‘Ž
Allowed substitution hints:   π‘ˆ(π‘₯,𝑑,𝑔)   𝐹(π‘₯,𝑒,𝑔,𝑖)   𝑉(π‘₯,𝑒,𝑑,𝑔,𝑖)

Proof of Theorem fin23lem17
Dummy variables 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin23lem.a . . . 4 π‘ˆ = seqΟ‰((𝑖 ∈ Ο‰, 𝑒 ∈ V ↦ if(((π‘‘β€˜π‘–) ∩ 𝑒) = βˆ…, 𝑒, ((π‘‘β€˜π‘–) ∩ 𝑒))), βˆͺ ran 𝑑)
21fin23lem13 10327 . . 3 (𝑐 ∈ Ο‰ β†’ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘))
32rgen 3064 . 2 βˆ€π‘ ∈ Ο‰ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘)
4 fveq1 6891 . . . . . 6 (𝑏 = π‘ˆ β†’ (π‘β€˜suc 𝑐) = (π‘ˆβ€˜suc 𝑐))
5 fveq1 6891 . . . . . 6 (𝑏 = π‘ˆ β†’ (π‘β€˜π‘) = (π‘ˆβ€˜π‘))
64, 5sseq12d 4016 . . . . 5 (𝑏 = π‘ˆ β†’ ((π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) ↔ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘)))
76ralbidv 3178 . . . 4 (𝑏 = π‘ˆ β†’ (βˆ€π‘ ∈ Ο‰ (π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) ↔ βˆ€π‘ ∈ Ο‰ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘)))
8 rneq 5936 . . . . . 6 (𝑏 = π‘ˆ β†’ ran 𝑏 = ran π‘ˆ)
98inteqd 4956 . . . . 5 (𝑏 = π‘ˆ β†’ ∩ ran 𝑏 = ∩ ran π‘ˆ)
109, 8eleq12d 2828 . . . 4 (𝑏 = π‘ˆ β†’ (∩ ran 𝑏 ∈ ran 𝑏 ↔ ∩ ran π‘ˆ ∈ ran π‘ˆ))
117, 10imbi12d 345 . . 3 (𝑏 = π‘ˆ β†’ ((βˆ€π‘ ∈ Ο‰ (π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) β†’ ∩ ran 𝑏 ∈ ran 𝑏) ↔ (βˆ€π‘ ∈ Ο‰ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘) β†’ ∩ ran π‘ˆ ∈ ran π‘ˆ)))
12 fin23lem17.f . . . . . 6 𝐹 = {𝑔 ∣ βˆ€π‘Ž ∈ (𝒫 𝑔 ↑m Ο‰)(βˆ€π‘₯ ∈ Ο‰ (π‘Žβ€˜suc π‘₯) βŠ† (π‘Žβ€˜π‘₯) β†’ ∩ ran π‘Ž ∈ ran π‘Ž)}
1312isfin3ds 10324 . . . . 5 (βˆͺ ran 𝑑 ∈ 𝐹 β†’ (βˆͺ ran 𝑑 ∈ 𝐹 ↔ βˆ€π‘ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰)(βˆ€π‘ ∈ Ο‰ (π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) β†’ ∩ ran 𝑏 ∈ ran 𝑏)))
1413ibi 267 . . . 4 (βˆͺ ran 𝑑 ∈ 𝐹 β†’ βˆ€π‘ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰)(βˆ€π‘ ∈ Ο‰ (π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) β†’ ∩ ran 𝑏 ∈ ran 𝑏))
1514adantr 482 . . 3 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ βˆ€π‘ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰)(βˆ€π‘ ∈ Ο‰ (π‘β€˜suc 𝑐) βŠ† (π‘β€˜π‘) β†’ ∩ ran 𝑏 ∈ ran 𝑏))
161fnseqom 8455 . . . . . 6 π‘ˆ Fn Ο‰
17 dffn3 6731 . . . . . 6 (π‘ˆ Fn Ο‰ ↔ π‘ˆ:Ο‰βŸΆran π‘ˆ)
1816, 17mpbi 229 . . . . 5 π‘ˆ:Ο‰βŸΆran π‘ˆ
19 pwuni 4950 . . . . . 6 ran π‘ˆ βŠ† 𝒫 βˆͺ ran π‘ˆ
201fin23lem16 10330 . . . . . . 7 βˆͺ ran π‘ˆ = βˆͺ ran 𝑑
2120pweqi 4619 . . . . . 6 𝒫 βˆͺ ran π‘ˆ = 𝒫 βˆͺ ran 𝑑
2219, 21sseqtri 4019 . . . . 5 ran π‘ˆ βŠ† 𝒫 βˆͺ ran 𝑑
23 fss 6735 . . . . 5 ((π‘ˆ:Ο‰βŸΆran π‘ˆ ∧ ran π‘ˆ βŠ† 𝒫 βˆͺ ran 𝑑) β†’ π‘ˆ:Ο‰βŸΆπ’« βˆͺ ran 𝑑)
2418, 22, 23mp2an 691 . . . 4 π‘ˆ:Ο‰βŸΆπ’« βˆͺ ran 𝑑
25 vex 3479 . . . . . . . 8 𝑑 ∈ V
2625rnex 7903 . . . . . . 7 ran 𝑑 ∈ V
2726uniex 7731 . . . . . 6 βˆͺ ran 𝑑 ∈ V
2827pwex 5379 . . . . 5 𝒫 βˆͺ ran 𝑑 ∈ V
29 f1f 6788 . . . . . . 7 (𝑑:ω–1-1→𝑉 β†’ 𝑑:Ο‰βŸΆπ‘‰)
30 dmfex 7898 . . . . . . 7 ((𝑑 ∈ V ∧ 𝑑:Ο‰βŸΆπ‘‰) β†’ Ο‰ ∈ V)
3125, 29, 30sylancr 588 . . . . . 6 (𝑑:ω–1-1→𝑉 β†’ Ο‰ ∈ V)
3231adantl 483 . . . . 5 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ Ο‰ ∈ V)
33 elmapg 8833 . . . . 5 ((𝒫 βˆͺ ran 𝑑 ∈ V ∧ Ο‰ ∈ V) β†’ (π‘ˆ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰) ↔ π‘ˆ:Ο‰βŸΆπ’« βˆͺ ran 𝑑))
3428, 32, 33sylancr 588 . . . 4 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ (π‘ˆ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰) ↔ π‘ˆ:Ο‰βŸΆπ’« βˆͺ ran 𝑑))
3524, 34mpbiri 258 . . 3 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ π‘ˆ ∈ (𝒫 βˆͺ ran 𝑑 ↑m Ο‰))
3611, 15, 35rspcdva 3614 . 2 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ (βˆ€π‘ ∈ Ο‰ (π‘ˆβ€˜suc 𝑐) βŠ† (π‘ˆβ€˜π‘) β†’ ∩ ran π‘ˆ ∈ ran π‘ˆ))
373, 36mpi 20 1 ((βˆͺ ran 𝑑 ∈ 𝐹 ∧ 𝑑:ω–1-1→𝑉) β†’ ∩ ran π‘ˆ ∈ ran π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {cab 2710  βˆ€wral 3062  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4323  ifcif 4529  π’« cpw 4603  βˆͺ cuni 4909  βˆ© cint 4951  ran crn 5678  suc csuc 6367   Fn wfn 6539  βŸΆwf 6540  β€“1-1β†’wf1 6541  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  Ο‰com 7855  seqΟ‰cseqom 8447   ↑m cmap 8820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-seqom 8448  df-map 8822
This theorem is referenced by:  fin23lem21  10334
  Copyright terms: Public domain W3C validator