Step | Hyp | Ref
| Expression |
1 | | fin23lem.a |
. . . 4
β’ π = seqΟ((π β Ο, π’ β V β¦ if(((π‘βπ) β© π’) = β
, π’, ((π‘βπ) β© π’))), βͺ ran π‘) |
2 | 1 | fin23lem13 10323 |
. . 3
β’ (π β Ο β (πβsuc π) β (πβπ)) |
3 | 2 | rgen 3063 |
. 2
β’
βπ β
Ο (πβsuc π) β (πβπ) |
4 | | fveq1 6887 |
. . . . . 6
β’ (π = π β (πβsuc π) = (πβsuc π)) |
5 | | fveq1 6887 |
. . . . . 6
β’ (π = π β (πβπ) = (πβπ)) |
6 | 4, 5 | sseq12d 4014 |
. . . . 5
β’ (π = π β ((πβsuc π) β (πβπ) β (πβsuc π) β (πβπ))) |
7 | 6 | ralbidv 3177 |
. . . 4
β’ (π = π β (βπ β Ο (πβsuc π) β (πβπ) β βπ β Ο (πβsuc π) β (πβπ))) |
8 | | rneq 5933 |
. . . . . 6
β’ (π = π β ran π = ran π) |
9 | 8 | inteqd 4954 |
. . . . 5
β’ (π = π β β© ran
π = β© ran π) |
10 | 9, 8 | eleq12d 2827 |
. . . 4
β’ (π = π β (β© ran
π β ran π β β© ran π β ran π)) |
11 | 7, 10 | imbi12d 344 |
. . 3
β’ (π = π β ((βπ β Ο (πβsuc π) β (πβπ) β β© ran
π β ran π) β (βπ β Ο (πβsuc π) β (πβπ) β β© ran
π β ran π))) |
12 | | fin23lem17.f |
. . . . . 6
β’ πΉ = {π β£ βπ β (π« π βm Ο)(βπ₯ β Ο (πβsuc π₯) β (πβπ₯) β β© ran
π β ran π)} |
13 | 12 | isfin3ds 10320 |
. . . . 5
β’ (βͺ ran π‘ β πΉ β (βͺ ran
π‘ β πΉ β βπ β (π« βͺ ran π‘ βm Ο)(βπ β Ο (πβsuc π) β (πβπ) β β© ran
π β ran π))) |
14 | 13 | ibi 266 |
. . . 4
β’ (βͺ ran π‘ β πΉ β βπ β (π« βͺ ran π‘ βm Ο)(βπ β Ο (πβsuc π) β (πβπ) β β© ran
π β ran π)) |
15 | 14 | adantr 481 |
. . 3
β’ ((βͺ ran π‘ β πΉ β§ π‘:Οβ1-1βπ) β βπ β (π« βͺ ran π‘ βm Ο)(βπ β Ο (πβsuc π) β (πβπ) β β© ran
π β ran π)) |
16 | 1 | fnseqom 8451 |
. . . . . 6
β’ π Fn Ο |
17 | | dffn3 6727 |
. . . . . 6
β’ (π Fn Ο β π:ΟβΆran π) |
18 | 16, 17 | mpbi 229 |
. . . . 5
β’ π:ΟβΆran π |
19 | | pwuni 4948 |
. . . . . 6
β’ ran π β π« βͺ ran π |
20 | 1 | fin23lem16 10326 |
. . . . . . 7
β’ βͺ ran π = βͺ ran π‘ |
21 | 20 | pweqi 4617 |
. . . . . 6
β’ π«
βͺ ran π = π« βͺ
ran π‘ |
22 | 19, 21 | sseqtri 4017 |
. . . . 5
β’ ran π β π« βͺ ran π‘ |
23 | | fss 6731 |
. . . . 5
β’ ((π:ΟβΆran π β§ ran π β π« βͺ ran π‘) β π:ΟβΆπ« βͺ ran π‘) |
24 | 18, 22, 23 | mp2an 690 |
. . . 4
β’ π:ΟβΆπ« βͺ ran π‘ |
25 | | vex 3478 |
. . . . . . . 8
β’ π‘ β V |
26 | 25 | rnex 7899 |
. . . . . . 7
β’ ran π‘ β V |
27 | 26 | uniex 7727 |
. . . . . 6
β’ βͺ ran π‘ β V |
28 | 27 | pwex 5377 |
. . . . 5
β’ π«
βͺ ran π‘ β V |
29 | | f1f 6784 |
. . . . . . 7
β’ (π‘:Οβ1-1βπ β π‘:ΟβΆπ) |
30 | | dmfex 7894 |
. . . . . . 7
β’ ((π‘ β V β§ π‘:ΟβΆπ) β Ο β
V) |
31 | 25, 29, 30 | sylancr 587 |
. . . . . 6
β’ (π‘:Οβ1-1βπ β Ο β V) |
32 | 31 | adantl 482 |
. . . . 5
β’ ((βͺ ran π‘ β πΉ β§ π‘:Οβ1-1βπ) β Ο β V) |
33 | | elmapg 8829 |
. . . . 5
β’
((π« βͺ ran π‘ β V β§ Ο β V) β
(π β (π« βͺ ran π‘ βm Ο) β π:ΟβΆπ« βͺ ran π‘)) |
34 | 28, 32, 33 | sylancr 587 |
. . . 4
β’ ((βͺ ran π‘ β πΉ β§ π‘:Οβ1-1βπ) β (π β (π« βͺ ran π‘ βm Ο) β π:ΟβΆπ« βͺ ran π‘)) |
35 | 24, 34 | mpbiri 257 |
. . 3
β’ ((βͺ ran π‘ β πΉ β§ π‘:Οβ1-1βπ) β π β (π« βͺ ran π‘ βm
Ο)) |
36 | 11, 15, 35 | rspcdva 3613 |
. 2
β’ ((βͺ ran π‘ β πΉ β§ π‘:Οβ1-1βπ) β (βπ β Ο (πβsuc π) β (πβπ) β β© ran
π β ran π)) |
37 | 3, 36 | mpi 20 |
1
β’ ((βͺ ran π‘ β πΉ β§ π‘:Οβ1-1βπ) β β© ran
π β ran π) |