| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islhp2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012.) |
| Ref | Expression |
|---|---|
| lhpset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lhpset.u | ⊢ 1 = (1.‘𝐾) |
| lhpset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lhpset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| islhp2 | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ 𝑊𝐶 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpset.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lhpset.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 3 | lhpset.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | lhpset.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | islhp 39957 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) |
| 6 | 5 | baibd 539 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ 𝑊𝐶 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 Basecbs 17229 1.cp1 18438 ⋖ ccvr 39222 LHypclh 39945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-lhyp 39949 |
| This theorem is referenced by: lhpoc 39975 |
| Copyright terms: Public domain | W3C validator |