Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islhp2 Structured version   Visualization version   GIF version

Theorem islhp2 37657
Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhpset.b 𝐵 = (Base‘𝐾)
lhpset.u 1 = (1.‘𝐾)
lhpset.c 𝐶 = ( ⋖ ‘𝐾)
lhpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
islhp2 ((𝐾𝐴𝑊𝐵) → (𝑊𝐻𝑊𝐶 1 ))

Proof of Theorem islhp2
StepHypRef Expression
1 lhpset.b . . 3 𝐵 = (Base‘𝐾)
2 lhpset.u . . 3 1 = (1.‘𝐾)
3 lhpset.c . . 3 𝐶 = ( ⋖ ‘𝐾)
4 lhpset.h . . 3 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4islhp 37656 . 2 (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊𝐵𝑊𝐶 1 )))
65baibd 543 1 ((𝐾𝐴𝑊𝐵) → (𝑊𝐻𝑊𝐶 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114   class class class wbr 5031  cfv 6340  Basecbs 16589  1.cp1 17767  ccvr 36922  LHypclh 37644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-iota 6298  df-fun 6342  df-fv 6348  df-lhyp 37648
This theorem is referenced by:  lhpoc  37674
  Copyright terms: Public domain W3C validator