Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islhp2 Structured version   Visualization version   GIF version

Theorem islhp2 36017
 Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhpset.b 𝐵 = (Base‘𝐾)
lhpset.u 1 = (1.‘𝐾)
lhpset.c 𝐶 = ( ⋖ ‘𝐾)
lhpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
islhp2 ((𝐾𝐴𝑊𝐵) → (𝑊𝐻𝑊𝐶 1 ))

Proof of Theorem islhp2
StepHypRef Expression
1 lhpset.b . . 3 𝐵 = (Base‘𝐾)
2 lhpset.u . . 3 1 = (1.‘𝐾)
3 lhpset.c . . 3 𝐶 = ( ⋖ ‘𝐾)
4 lhpset.h . . 3 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4islhp 36016 . 2 (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊𝐵𝑊𝐶 1 )))
65baibd 536 1 ((𝐾𝐴𝑊𝐵) → (𝑊𝐻𝑊𝐶 1 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 385   = wceq 1653   ∈ wcel 2157   class class class wbr 4844  ‘cfv 6102  Basecbs 16183  1.cp1 17352   ⋖ ccvr 35282  LHypclh 36004 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-iota 6065  df-fun 6104  df-fv 6110  df-lhyp 36008 This theorem is referenced by:  lhpoc  36034
 Copyright terms: Public domain W3C validator