Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islhp2 Structured version   Visualization version   GIF version

Theorem islhp2 40044
Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhpset.b 𝐵 = (Base‘𝐾)
lhpset.u 1 = (1.‘𝐾)
lhpset.c 𝐶 = ( ⋖ ‘𝐾)
lhpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
islhp2 ((𝐾𝐴𝑊𝐵) → (𝑊𝐻𝑊𝐶 1 ))

Proof of Theorem islhp2
StepHypRef Expression
1 lhpset.b . . 3 𝐵 = (Base‘𝐾)
2 lhpset.u . . 3 1 = (1.‘𝐾)
3 lhpset.c . . 3 𝐶 = ( ⋖ ‘𝐾)
4 lhpset.h . . 3 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4islhp 40043 . 2 (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊𝐵𝑊𝐶 1 )))
65baibd 539 1 ((𝐾𝐴𝑊𝐵) → (𝑊𝐻𝑊𝐶 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  Basecbs 17120  1.cp1 18328  ccvr 39309  LHypclh 40031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-lhyp 40035
This theorem is referenced by:  lhpoc  40061
  Copyright terms: Public domain W3C validator