Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islhp2 Structured version   Visualization version   GIF version

Theorem islhp2 39958
Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhpset.b 𝐵 = (Base‘𝐾)
lhpset.u 1 = (1.‘𝐾)
lhpset.c 𝐶 = ( ⋖ ‘𝐾)
lhpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
islhp2 ((𝐾𝐴𝑊𝐵) → (𝑊𝐻𝑊𝐶 1 ))

Proof of Theorem islhp2
StepHypRef Expression
1 lhpset.b . . 3 𝐵 = (Base‘𝐾)
2 lhpset.u . . 3 1 = (1.‘𝐾)
3 lhpset.c . . 3 𝐶 = ( ⋖ ‘𝐾)
4 lhpset.h . . 3 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4islhp 39957 . 2 (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊𝐵𝑊𝐶 1 )))
65baibd 539 1 ((𝐾𝐴𝑊𝐵) → (𝑊𝐻𝑊𝐶 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107   class class class wbr 5123  cfv 6541  Basecbs 17229  1.cp1 18438  ccvr 39222  LHypclh 39945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-lhyp 39949
This theorem is referenced by:  lhpoc  39975
  Copyright terms: Public domain W3C validator