![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islhp2 | Structured version Visualization version GIF version |
Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
lhpset.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpset.u | ⊢ 1 = (1.‘𝐾) |
lhpset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lhpset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
islhp2 | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ 𝑊𝐶 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpset.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lhpset.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
3 | lhpset.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | lhpset.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | islhp 36016 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) |
6 | 5 | baibd 536 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ 𝑊𝐶 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4844 ‘cfv 6102 Basecbs 16183 1.cp1 17352 ⋖ ccvr 35282 LHypclh 36004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-lhyp 36008 |
This theorem is referenced by: lhpoc 36034 |
Copyright terms: Public domain | W3C validator |