Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islhp | Structured version Visualization version GIF version |
Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
lhpset.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpset.u | ⊢ 1 = (1.‘𝐾) |
lhpset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lhpset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
islhp | ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lhpset.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
3 | lhpset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | lhpset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | lhpset 37936 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐻 = {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 }) |
6 | 5 | eleq2d 2824 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ 𝑊 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 })) |
7 | breq1 5073 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤𝐶 1 ↔ 𝑊𝐶 1 )) | |
8 | 7 | elrab 3617 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 } ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 )) |
9 | 6, 8 | bitrdi 286 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 1.cp1 18057 ⋖ ccvr 37203 LHypclh 37925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-lhyp 37929 |
This theorem is referenced by: islhp2 37938 lhpbase 37939 lhp1cvr 37940 |
Copyright terms: Public domain | W3C validator |