| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islhp | Structured version Visualization version GIF version | ||
| Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012.) |
| Ref | Expression |
|---|---|
| lhpset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lhpset.u | ⊢ 1 = (1.‘𝐾) |
| lhpset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lhpset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| islhp | ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lhpset.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 3 | lhpset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | lhpset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | lhpset 39981 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐻 = {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 }) |
| 6 | 5 | eleq2d 2815 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ 𝑊 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 })) |
| 7 | breq1 5118 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤𝐶 1 ↔ 𝑊𝐶 1 )) | |
| 8 | 7 | elrab 3667 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 } ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 )) |
| 9 | 6, 8 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3411 class class class wbr 5115 ‘cfv 6519 Basecbs 17185 1.cp1 18389 ⋖ ccvr 39247 LHypclh 39970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-lhyp 39974 |
| This theorem is referenced by: islhp2 39983 lhpbase 39984 lhp1cvr 39985 |
| Copyright terms: Public domain | W3C validator |