![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islhp | Structured version Visualization version GIF version |
Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
lhpset.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpset.u | ⊢ 1 = (1.‘𝐾) |
lhpset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lhpset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
islhp | ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lhpset.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
3 | lhpset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | lhpset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | lhpset 39978 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐻 = {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 }) |
6 | 5 | eleq2d 2825 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ 𝑊 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 })) |
7 | breq1 5151 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤𝐶 1 ↔ 𝑊𝐶 1 )) | |
8 | 7 | elrab 3695 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 } ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 )) |
9 | 6, 8 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 1.cp1 18482 ⋖ ccvr 39244 LHypclh 39967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-lhyp 39971 |
This theorem is referenced by: islhp2 39980 lhpbase 39981 lhp1cvr 39982 |
Copyright terms: Public domain | W3C validator |