Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islhp Structured version   Visualization version   GIF version

Theorem islhp 40014
Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lhpset.b 𝐵 = (Base‘𝐾)
lhpset.u 1 = (1.‘𝐾)
lhpset.c 𝐶 = ( ⋖ ‘𝐾)
lhpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
islhp (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊𝐵𝑊𝐶 1 )))

Proof of Theorem islhp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lhpset.b . . . 4 𝐵 = (Base‘𝐾)
2 lhpset.u . . . 4 1 = (1.‘𝐾)
3 lhpset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
4 lhpset.h . . . 4 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpset 40013 . . 3 (𝐾𝐴𝐻 = {𝑤𝐵𝑤𝐶 1 })
65eleq2d 2815 . 2 (𝐾𝐴 → (𝑊𝐻𝑊 ∈ {𝑤𝐵𝑤𝐶 1 }))
7 breq1 5092 . . 3 (𝑤 = 𝑊 → (𝑤𝐶 1𝑊𝐶 1 ))
87elrab 3645 . 2 (𝑊 ∈ {𝑤𝐵𝑤𝐶 1 } ↔ (𝑊𝐵𝑊𝐶 1 ))
96, 8bitrdi 287 1 (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊𝐵𝑊𝐶 1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  {crab 3393   class class class wbr 5089  cfv 6477  Basecbs 17112  1.cp1 18320  ccvr 39280  LHypclh 40002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-lhyp 40006
This theorem is referenced by:  islhp2  40015  lhpbase  40016  lhp1cvr  40017
  Copyright terms: Public domain W3C validator