![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islhp | Structured version Visualization version GIF version |
Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
lhpset.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpset.u | ⊢ 1 = (1.‘𝐾) |
lhpset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lhpset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
islhp | ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lhpset.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
3 | lhpset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | lhpset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | lhpset 39595 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝐻 = {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 }) |
6 | 5 | eleq2d 2811 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ 𝑊 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 })) |
7 | breq1 5152 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤𝐶 1 ↔ 𝑊𝐶 1 )) | |
8 | 7 | elrab 3679 | . 2 ⊢ (𝑊 ∈ {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 } ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 )) |
9 | 6, 8 | bitrdi 286 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊𝐶 1 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 class class class wbr 5149 ‘cfv 6549 Basecbs 17183 1.cp1 18419 ⋖ ccvr 38861 LHypclh 39584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-lhyp 39588 |
This theorem is referenced by: islhp2 39597 lhpbase 39598 lhp1cvr 39599 |
Copyright terms: Public domain | W3C validator |