Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islhp Structured version   Visualization version   GIF version

Theorem islhp 39982
Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lhpset.b 𝐵 = (Base‘𝐾)
lhpset.u 1 = (1.‘𝐾)
lhpset.c 𝐶 = ( ⋖ ‘𝐾)
lhpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
islhp (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊𝐵𝑊𝐶 1 )))

Proof of Theorem islhp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lhpset.b . . . 4 𝐵 = (Base‘𝐾)
2 lhpset.u . . . 4 1 = (1.‘𝐾)
3 lhpset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
4 lhpset.h . . . 4 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpset 39981 . . 3 (𝐾𝐴𝐻 = {𝑤𝐵𝑤𝐶 1 })
65eleq2d 2815 . 2 (𝐾𝐴 → (𝑊𝐻𝑊 ∈ {𝑤𝐵𝑤𝐶 1 }))
7 breq1 5118 . . 3 (𝑤 = 𝑊 → (𝑤𝐶 1𝑊𝐶 1 ))
87elrab 3667 . 2 (𝑊 ∈ {𝑤𝐵𝑤𝐶 1 } ↔ (𝑊𝐵𝑊𝐶 1 ))
96, 8bitrdi 287 1 (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊𝐵𝑊𝐶 1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3411   class class class wbr 5115  cfv 6519  Basecbs 17185  1.cp1 18389  ccvr 39247  LHypclh 39970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527  df-lhyp 39974
This theorem is referenced by:  islhp2  39983  lhpbase  39984  lhp1cvr  39985
  Copyright terms: Public domain W3C validator