Proof of Theorem lhpbase
Step | Hyp | Ref
| Expression |
1 | | n0i 4267 |
. . . 4
⊢ (𝑊 ∈ 𝐻 → ¬ 𝐻 = ∅) |
2 | | lhpbase.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
3 | 2 | eqeq1i 2743 |
. . . 4
⊢ (𝐻 = ∅ ↔
(LHyp‘𝐾) =
∅) |
4 | 1, 3 | sylnib 328 |
. . 3
⊢ (𝑊 ∈ 𝐻 → ¬ (LHyp‘𝐾) = ∅) |
5 | | fvprc 6766 |
. . 3
⊢ (¬
𝐾 ∈ V →
(LHyp‘𝐾) =
∅) |
6 | 4, 5 | nsyl2 141 |
. 2
⊢ (𝑊 ∈ 𝐻 → 𝐾 ∈ V) |
7 | | lhpbase.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
8 | | eqid 2738 |
. . . 4
⊢
(1.‘𝐾) =
(1.‘𝐾) |
9 | | eqid 2738 |
. . . 4
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
10 | 7, 8, 9, 2 | islhp 38010 |
. . 3
⊢ (𝐾 ∈ V → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ 𝐵 ∧ 𝑊( ⋖ ‘𝐾)(1.‘𝐾)))) |
11 | 10 | simprbda 499 |
. 2
⊢ ((𝐾 ∈ V ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ 𝐵) |
12 | 6, 11 | mpancom 685 |
1
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |