Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpoc Structured version   Visualization version   GIF version

Theorem lhpoc 39973
Description: The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhpoc.b 𝐵 = (Base‘𝐾)
lhpoc.o = (oc‘𝐾)
lhpoc.a 𝐴 = (Atoms‘𝐾)
lhpoc.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpoc ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐻 ↔ ( 𝑊) ∈ 𝐴))

Proof of Theorem lhpoc
StepHypRef Expression
1 lhpoc.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2740 . . 3 (1.‘𝐾) = (1.‘𝐾)
3 eqid 2740 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 lhpoc.h . . 3 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4islhp2 39956 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐻𝑊( ⋖ ‘𝐾)(1.‘𝐾)))
6 lhpoc.o . . 3 = (oc‘𝐾)
7 lhpoc.a . . 3 𝐴 = (Atoms‘𝐾)
81, 2, 6, 3, 71cvrco 39431 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ↔ ( 𝑊) ∈ 𝐴))
95, 8bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐻 ↔ ( 𝑊) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6575  Basecbs 17260  occoc 17321  1.cp1 18496  ccvr 39220  Atomscatm 39221  HLchlt 39308  LHypclh 39943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-proset 18367  df-poset 18385  df-plt 18402  df-lub 18418  df-glb 18419  df-p0 18497  df-p1 18498  df-oposet 39134  df-ol 39136  df-oml 39137  df-covers 39224  df-ats 39225  df-hlat 39309  df-lhyp 39947
This theorem is referenced by:  lhpoc2N  39974  lhpocnle  39975  lhpocat  39976
  Copyright terms: Public domain W3C validator