![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpoc | Structured version Visualization version GIF version |
Description: The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
lhpoc.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpoc.o | ⊢ ⊥ = (oc‘𝐾) |
lhpoc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpoc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpoc | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpoc.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2737 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
3 | eqid 2737 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
4 | lhpoc.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | islhp2 39994 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ 𝑊( ⋖ ‘𝐾)(1.‘𝐾))) |
6 | lhpoc.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
7 | lhpoc.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 1, 2, 6, 3, 7 | 1cvrco 39469 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) |
9 | 5, 8 | bitrd 279 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 ‘cfv 6569 Basecbs 17254 occoc 17315 1.cp1 18491 ⋖ ccvr 39258 Atomscatm 39259 HLchlt 39346 LHypclh 39981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-proset 18361 df-poset 18380 df-plt 18397 df-lub 18413 df-glb 18414 df-p0 18492 df-p1 18493 df-oposet 39172 df-ol 39174 df-oml 39175 df-covers 39262 df-ats 39263 df-hlat 39347 df-lhyp 39985 |
This theorem is referenced by: lhpoc2N 40012 lhpocnle 40013 lhpocat 40014 |
Copyright terms: Public domain | W3C validator |