| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpoc | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012.) |
| Ref | Expression |
|---|---|
| lhpoc.b | ⊢ 𝐵 = (Base‘𝐾) |
| lhpoc.o | ⊢ ⊥ = (oc‘𝐾) |
| lhpoc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpoc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpoc | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpoc.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 4 | lhpoc.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | islhp2 39996 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ 𝑊( ⋖ ‘𝐾)(1.‘𝐾))) |
| 6 | lhpoc.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 7 | lhpoc.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | 1, 2, 6, 3, 7 | 1cvrco 39471 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) |
| 9 | 5, 8 | bitrd 279 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 Basecbs 17139 occoc 17188 1.cp1 18347 ⋖ ccvr 39260 Atomscatm 39261 HLchlt 39348 LHypclh 39983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-proset 18219 df-poset 18238 df-plt 18253 df-lub 18269 df-glb 18270 df-p0 18348 df-p1 18349 df-oposet 39174 df-ol 39176 df-oml 39177 df-covers 39264 df-ats 39265 df-hlat 39349 df-lhyp 39987 |
| This theorem is referenced by: lhpoc2N 40014 lhpocnle 40015 lhpocat 40016 |
| Copyright terms: Public domain | W3C validator |