| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omndadd | Structured version Visualization version GIF version | ||
| Description: In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) |
| omndadd.1 | ⊢ ≤ = (le‘𝑀) |
| omndadd.2 | ⊢ + = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| omndadd | ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndadd.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | omndadd.2 | . . . . 5 ⊢ + = (+g‘𝑀) | |
| 3 | omndadd.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
| 4 | 1, 2, 3 | isomnd 33069 | . . . 4 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
| 5 | 4 | simp3bi 1147 | . . 3 ⊢ (𝑀 ∈ oMnd → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
| 6 | breq1 5122 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 ≤ 𝑏 ↔ 𝑋 ≤ 𝑏)) | |
| 7 | oveq1 7412 | . . . . . 6 ⊢ (𝑎 = 𝑋 → (𝑎 + 𝑐) = (𝑋 + 𝑐)) | |
| 8 | 7 | breq1d 5129 | . . . . 5 ⊢ (𝑎 = 𝑋 → ((𝑎 + 𝑐) ≤ (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) ≤ (𝑏 + 𝑐))) |
| 9 | 6, 8 | imbi12d 344 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) ↔ (𝑋 ≤ 𝑏 → (𝑋 + 𝑐) ≤ (𝑏 + 𝑐)))) |
| 10 | breq2 5123 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 ≤ 𝑏 ↔ 𝑋 ≤ 𝑌)) | |
| 11 | oveq1 7412 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝑏 + 𝑐) = (𝑌 + 𝑐)) | |
| 12 | 11 | breq2d 5131 | . . . . 5 ⊢ (𝑏 = 𝑌 → ((𝑋 + 𝑐) ≤ (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) ≤ (𝑌 + 𝑐))) |
| 13 | 10, 12 | imbi12d 344 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑋 ≤ 𝑏 → (𝑋 + 𝑐) ≤ (𝑏 + 𝑐)) ↔ (𝑋 ≤ 𝑌 → (𝑋 + 𝑐) ≤ (𝑌 + 𝑐)))) |
| 14 | oveq2 7413 | . . . . . 6 ⊢ (𝑐 = 𝑍 → (𝑋 + 𝑐) = (𝑋 + 𝑍)) | |
| 15 | oveq2 7413 | . . . . . 6 ⊢ (𝑐 = 𝑍 → (𝑌 + 𝑐) = (𝑌 + 𝑍)) | |
| 16 | 14, 15 | breq12d 5132 | . . . . 5 ⊢ (𝑐 = 𝑍 → ((𝑋 + 𝑐) ≤ (𝑌 + 𝑐) ↔ (𝑋 + 𝑍) ≤ (𝑌 + 𝑍))) |
| 17 | 16 | imbi2d 340 | . . . 4 ⊢ (𝑐 = 𝑍 → ((𝑋 ≤ 𝑌 → (𝑋 + 𝑐) ≤ (𝑌 + 𝑐)) ↔ (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)))) |
| 18 | 9, 13, 17 | rspc3v 3617 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) → (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)))) |
| 19 | 5, 18 | mpan9 506 | . 2 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍))) |
| 20 | 19 | 3impia 1117 | 1 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 lecple 17278 Tosetctos 18426 Mndcmnd 18712 oMndcomnd 33065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-omnd 33067 |
| This theorem is referenced by: omndaddr 33075 omndadd2d 33076 omndadd2rd 33077 submomnd 33078 omndmul2 33080 omndmul3 33081 ogrpinv0le 33083 ogrpsub 33084 ogrpaddlt 33085 orngsqr 33326 ornglmulle 33327 orngrmulle 33328 |
| Copyright terms: Public domain | W3C validator |