![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndadd | Structured version Visualization version GIF version |
Description: In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) |
omndadd.1 | ⊢ ≤ = (le‘𝑀) |
omndadd.2 | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
omndadd | ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndadd.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | omndadd.2 | . . . . 5 ⊢ + = (+g‘𝑀) | |
3 | omndadd.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
4 | 1, 2, 3 | isomnd 33061 | . . . 4 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
5 | 4 | simp3bi 1146 | . . 3 ⊢ (𝑀 ∈ oMnd → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
6 | breq1 5151 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 ≤ 𝑏 ↔ 𝑋 ≤ 𝑏)) | |
7 | oveq1 7438 | . . . . . 6 ⊢ (𝑎 = 𝑋 → (𝑎 + 𝑐) = (𝑋 + 𝑐)) | |
8 | 7 | breq1d 5158 | . . . . 5 ⊢ (𝑎 = 𝑋 → ((𝑎 + 𝑐) ≤ (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) ≤ (𝑏 + 𝑐))) |
9 | 6, 8 | imbi12d 344 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) ↔ (𝑋 ≤ 𝑏 → (𝑋 + 𝑐) ≤ (𝑏 + 𝑐)))) |
10 | breq2 5152 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 ≤ 𝑏 ↔ 𝑋 ≤ 𝑌)) | |
11 | oveq1 7438 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝑏 + 𝑐) = (𝑌 + 𝑐)) | |
12 | 11 | breq2d 5160 | . . . . 5 ⊢ (𝑏 = 𝑌 → ((𝑋 + 𝑐) ≤ (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) ≤ (𝑌 + 𝑐))) |
13 | 10, 12 | imbi12d 344 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑋 ≤ 𝑏 → (𝑋 + 𝑐) ≤ (𝑏 + 𝑐)) ↔ (𝑋 ≤ 𝑌 → (𝑋 + 𝑐) ≤ (𝑌 + 𝑐)))) |
14 | oveq2 7439 | . . . . . 6 ⊢ (𝑐 = 𝑍 → (𝑋 + 𝑐) = (𝑋 + 𝑍)) | |
15 | oveq2 7439 | . . . . . 6 ⊢ (𝑐 = 𝑍 → (𝑌 + 𝑐) = (𝑌 + 𝑍)) | |
16 | 14, 15 | breq12d 5161 | . . . . 5 ⊢ (𝑐 = 𝑍 → ((𝑋 + 𝑐) ≤ (𝑌 + 𝑐) ↔ (𝑋 + 𝑍) ≤ (𝑌 + 𝑍))) |
17 | 16 | imbi2d 340 | . . . 4 ⊢ (𝑐 = 𝑍 → ((𝑋 ≤ 𝑌 → (𝑋 + 𝑐) ≤ (𝑌 + 𝑐)) ↔ (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)))) |
18 | 9, 13, 17 | rspc3v 3638 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) → (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)))) |
19 | 5, 18 | mpan9 506 | . 2 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍))) |
20 | 19 | 3impia 1116 | 1 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 lecple 17305 Tosetctos 18474 Mndcmnd 18760 oMndcomnd 33057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-omnd 33059 |
This theorem is referenced by: omndaddr 33067 omndadd2d 33068 omndadd2rd 33069 submomnd 33070 omndmul2 33072 omndmul3 33073 ogrpinv0le 33075 ogrpsub 33076 ogrpaddlt 33077 orngsqr 33314 ornglmulle 33315 orngrmulle 33316 |
Copyright terms: Public domain | W3C validator |