Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndadd Structured version   Visualization version   GIF version

Theorem omndadd 30711
Description: In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
omndadd.0 𝐵 = (Base‘𝑀)
omndadd.1 = (le‘𝑀)
omndadd.2 + = (+g𝑀)
Assertion
Ref Expression
omndadd ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 + 𝑍) (𝑌 + 𝑍))

Proof of Theorem omndadd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omndadd.0 . . . . 5 𝐵 = (Base‘𝑀)
2 omndadd.2 . . . . 5 + = (+g𝑀)
3 omndadd.1 . . . . 5 = (le‘𝑀)
41, 2, 3isomnd 30706 . . . 4 (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎 𝑏 → (𝑎 + 𝑐) (𝑏 + 𝑐))))
54simp3bi 1143 . . 3 (𝑀 ∈ oMnd → ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎 𝑏 → (𝑎 + 𝑐) (𝑏 + 𝑐)))
6 breq1 5041 . . . . 5 (𝑎 = 𝑋 → (𝑎 𝑏𝑋 𝑏))
7 oveq1 7136 . . . . . 6 (𝑎 = 𝑋 → (𝑎 + 𝑐) = (𝑋 + 𝑐))
87breq1d 5048 . . . . 5 (𝑎 = 𝑋 → ((𝑎 + 𝑐) (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) (𝑏 + 𝑐)))
96, 8imbi12d 347 . . . 4 (𝑎 = 𝑋 → ((𝑎 𝑏 → (𝑎 + 𝑐) (𝑏 + 𝑐)) ↔ (𝑋 𝑏 → (𝑋 + 𝑐) (𝑏 + 𝑐))))
10 breq2 5042 . . . . 5 (𝑏 = 𝑌 → (𝑋 𝑏𝑋 𝑌))
11 oveq1 7136 . . . . . 6 (𝑏 = 𝑌 → (𝑏 + 𝑐) = (𝑌 + 𝑐))
1211breq2d 5050 . . . . 5 (𝑏 = 𝑌 → ((𝑋 + 𝑐) (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) (𝑌 + 𝑐)))
1310, 12imbi12d 347 . . . 4 (𝑏 = 𝑌 → ((𝑋 𝑏 → (𝑋 + 𝑐) (𝑏 + 𝑐)) ↔ (𝑋 𝑌 → (𝑋 + 𝑐) (𝑌 + 𝑐))))
14 oveq2 7137 . . . . . 6 (𝑐 = 𝑍 → (𝑋 + 𝑐) = (𝑋 + 𝑍))
15 oveq2 7137 . . . . . 6 (𝑐 = 𝑍 → (𝑌 + 𝑐) = (𝑌 + 𝑍))
1614, 15breq12d 5051 . . . . 5 (𝑐 = 𝑍 → ((𝑋 + 𝑐) (𝑌 + 𝑐) ↔ (𝑋 + 𝑍) (𝑌 + 𝑍)))
1716imbi2d 343 . . . 4 (𝑐 = 𝑍 → ((𝑋 𝑌 → (𝑋 + 𝑐) (𝑌 + 𝑐)) ↔ (𝑋 𝑌 → (𝑋 + 𝑍) (𝑌 + 𝑍))))
189, 13, 17rspc3v 3612 . . 3 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎 𝑏 → (𝑎 + 𝑐) (𝑏 + 𝑐)) → (𝑋 𝑌 → (𝑋 + 𝑍) (𝑌 + 𝑍))))
195, 18mpan9 509 . 2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 + 𝑍) (𝑌 + 𝑍)))
20193impia 1113 1 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 + 𝑍) (𝑌 + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wral 3125   class class class wbr 5038  cfv 6327  (class class class)co 7129  Basecbs 16458  +gcplusg 16540  lecple 16547  Tosetctos 17618  Mndcmnd 17886  oMndcomnd 30702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-nul 5182
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3472  df-sbc 3749  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4811  df-br 5039  df-iota 6286  df-fv 6335  df-ov 7132  df-omnd 30704
This theorem is referenced by:  omndaddr  30712  omndadd2d  30713  omndadd2rd  30714  submomnd  30715  omndmul2  30717  omndmul3  30718  ogrpinv0le  30720  ogrpsub  30721  ogrpaddlt  30722  orngsqr  30881  ornglmulle  30882  orngrmulle  30883
  Copyright terms: Public domain W3C validator