![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndadd | Structured version Visualization version GIF version |
Description: In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) |
omndadd.1 | ⊢ ≤ = (le‘𝑀) |
omndadd.2 | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
omndadd | ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndadd.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | omndadd.2 | . . . . 5 ⊢ + = (+g‘𝑀) | |
3 | omndadd.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
4 | 1, 2, 3 | isomnd 32657 | . . . 4 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
5 | 4 | simp3bi 1146 | . . 3 ⊢ (𝑀 ∈ oMnd → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
6 | breq1 5151 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 ≤ 𝑏 ↔ 𝑋 ≤ 𝑏)) | |
7 | oveq1 7419 | . . . . . 6 ⊢ (𝑎 = 𝑋 → (𝑎 + 𝑐) = (𝑋 + 𝑐)) | |
8 | 7 | breq1d 5158 | . . . . 5 ⊢ (𝑎 = 𝑋 → ((𝑎 + 𝑐) ≤ (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) ≤ (𝑏 + 𝑐))) |
9 | 6, 8 | imbi12d 344 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) ↔ (𝑋 ≤ 𝑏 → (𝑋 + 𝑐) ≤ (𝑏 + 𝑐)))) |
10 | breq2 5152 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 ≤ 𝑏 ↔ 𝑋 ≤ 𝑌)) | |
11 | oveq1 7419 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝑏 + 𝑐) = (𝑌 + 𝑐)) | |
12 | 11 | breq2d 5160 | . . . . 5 ⊢ (𝑏 = 𝑌 → ((𝑋 + 𝑐) ≤ (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) ≤ (𝑌 + 𝑐))) |
13 | 10, 12 | imbi12d 344 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑋 ≤ 𝑏 → (𝑋 + 𝑐) ≤ (𝑏 + 𝑐)) ↔ (𝑋 ≤ 𝑌 → (𝑋 + 𝑐) ≤ (𝑌 + 𝑐)))) |
14 | oveq2 7420 | . . . . . 6 ⊢ (𝑐 = 𝑍 → (𝑋 + 𝑐) = (𝑋 + 𝑍)) | |
15 | oveq2 7420 | . . . . . 6 ⊢ (𝑐 = 𝑍 → (𝑌 + 𝑐) = (𝑌 + 𝑍)) | |
16 | 14, 15 | breq12d 5161 | . . . . 5 ⊢ (𝑐 = 𝑍 → ((𝑋 + 𝑐) ≤ (𝑌 + 𝑐) ↔ (𝑋 + 𝑍) ≤ (𝑌 + 𝑍))) |
17 | 16 | imbi2d 340 | . . . 4 ⊢ (𝑐 = 𝑍 → ((𝑋 ≤ 𝑌 → (𝑋 + 𝑐) ≤ (𝑌 + 𝑐)) ↔ (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)))) |
18 | 9, 13, 17 | rspc3v 3627 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) → (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)))) |
19 | 5, 18 | mpan9 506 | . 2 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍))) |
20 | 19 | 3impia 1116 | 1 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 lecple 17211 Tosetctos 18379 Mndcmnd 18665 oMndcomnd 32653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-omnd 32655 |
This theorem is referenced by: omndaddr 32663 omndadd2d 32664 omndadd2rd 32665 submomnd 32666 omndmul2 32668 omndmul3 32669 ogrpinv0le 32671 ogrpsub 32672 ogrpaddlt 32673 orngsqr 32860 ornglmulle 32861 orngrmulle 32862 |
Copyright terms: Public domain | W3C validator |