Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndadd | Structured version Visualization version GIF version |
Description: In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
omndadd.0 | ⊢ 𝐵 = (Base‘𝑀) |
omndadd.1 | ⊢ ≤ = (le‘𝑀) |
omndadd.2 | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
omndadd | ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omndadd.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | omndadd.2 | . . . . 5 ⊢ + = (+g‘𝑀) | |
3 | omndadd.1 | . . . . 5 ⊢ ≤ = (le‘𝑀) | |
4 | 1, 2, 3 | isomnd 31327 | . . . 4 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
5 | 4 | simp3bi 1146 | . . 3 ⊢ (𝑀 ∈ oMnd → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
6 | breq1 5077 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 ≤ 𝑏 ↔ 𝑋 ≤ 𝑏)) | |
7 | oveq1 7282 | . . . . . 6 ⊢ (𝑎 = 𝑋 → (𝑎 + 𝑐) = (𝑋 + 𝑐)) | |
8 | 7 | breq1d 5084 | . . . . 5 ⊢ (𝑎 = 𝑋 → ((𝑎 + 𝑐) ≤ (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) ≤ (𝑏 + 𝑐))) |
9 | 6, 8 | imbi12d 345 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) ↔ (𝑋 ≤ 𝑏 → (𝑋 + 𝑐) ≤ (𝑏 + 𝑐)))) |
10 | breq2 5078 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 ≤ 𝑏 ↔ 𝑋 ≤ 𝑌)) | |
11 | oveq1 7282 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝑏 + 𝑐) = (𝑌 + 𝑐)) | |
12 | 11 | breq2d 5086 | . . . . 5 ⊢ (𝑏 = 𝑌 → ((𝑋 + 𝑐) ≤ (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) ≤ (𝑌 + 𝑐))) |
13 | 10, 12 | imbi12d 345 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝑋 ≤ 𝑏 → (𝑋 + 𝑐) ≤ (𝑏 + 𝑐)) ↔ (𝑋 ≤ 𝑌 → (𝑋 + 𝑐) ≤ (𝑌 + 𝑐)))) |
14 | oveq2 7283 | . . . . . 6 ⊢ (𝑐 = 𝑍 → (𝑋 + 𝑐) = (𝑋 + 𝑍)) | |
15 | oveq2 7283 | . . . . . 6 ⊢ (𝑐 = 𝑍 → (𝑌 + 𝑐) = (𝑌 + 𝑍)) | |
16 | 14, 15 | breq12d 5087 | . . . . 5 ⊢ (𝑐 = 𝑍 → ((𝑋 + 𝑐) ≤ (𝑌 + 𝑐) ↔ (𝑋 + 𝑍) ≤ (𝑌 + 𝑍))) |
17 | 16 | imbi2d 341 | . . . 4 ⊢ (𝑐 = 𝑍 → ((𝑋 ≤ 𝑌 → (𝑋 + 𝑐) ≤ (𝑌 + 𝑐)) ↔ (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)))) |
18 | 9, 13, 17 | rspc3v 3573 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)) → (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)))) |
19 | 5, 18 | mpan9 507 | . 2 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍))) |
20 | 19 | 3impia 1116 | 1 ⊢ ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 + 𝑍) ≤ (𝑌 + 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 lecple 16969 Tosetctos 18134 Mndcmnd 18385 oMndcomnd 31323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-omnd 31325 |
This theorem is referenced by: omndaddr 31333 omndadd2d 31334 omndadd2rd 31335 submomnd 31336 omndmul2 31338 omndmul3 31339 ogrpinv0le 31341 ogrpsub 31342 ogrpaddlt 31343 orngsqr 31503 ornglmulle 31504 orngrmulle 31505 |
Copyright terms: Public domain | W3C validator |