Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndadd Structured version   Visualization version   GIF version

Theorem omndadd 31234
Description: In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
omndadd.0 𝐵 = (Base‘𝑀)
omndadd.1 = (le‘𝑀)
omndadd.2 + = (+g𝑀)
Assertion
Ref Expression
omndadd ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 + 𝑍) (𝑌 + 𝑍))

Proof of Theorem omndadd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omndadd.0 . . . . 5 𝐵 = (Base‘𝑀)
2 omndadd.2 . . . . 5 + = (+g𝑀)
3 omndadd.1 . . . . 5 = (le‘𝑀)
41, 2, 3isomnd 31229 . . . 4 (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎 𝑏 → (𝑎 + 𝑐) (𝑏 + 𝑐))))
54simp3bi 1145 . . 3 (𝑀 ∈ oMnd → ∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎 𝑏 → (𝑎 + 𝑐) (𝑏 + 𝑐)))
6 breq1 5073 . . . . 5 (𝑎 = 𝑋 → (𝑎 𝑏𝑋 𝑏))
7 oveq1 7262 . . . . . 6 (𝑎 = 𝑋 → (𝑎 + 𝑐) = (𝑋 + 𝑐))
87breq1d 5080 . . . . 5 (𝑎 = 𝑋 → ((𝑎 + 𝑐) (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) (𝑏 + 𝑐)))
96, 8imbi12d 344 . . . 4 (𝑎 = 𝑋 → ((𝑎 𝑏 → (𝑎 + 𝑐) (𝑏 + 𝑐)) ↔ (𝑋 𝑏 → (𝑋 + 𝑐) (𝑏 + 𝑐))))
10 breq2 5074 . . . . 5 (𝑏 = 𝑌 → (𝑋 𝑏𝑋 𝑌))
11 oveq1 7262 . . . . . 6 (𝑏 = 𝑌 → (𝑏 + 𝑐) = (𝑌 + 𝑐))
1211breq2d 5082 . . . . 5 (𝑏 = 𝑌 → ((𝑋 + 𝑐) (𝑏 + 𝑐) ↔ (𝑋 + 𝑐) (𝑌 + 𝑐)))
1310, 12imbi12d 344 . . . 4 (𝑏 = 𝑌 → ((𝑋 𝑏 → (𝑋 + 𝑐) (𝑏 + 𝑐)) ↔ (𝑋 𝑌 → (𝑋 + 𝑐) (𝑌 + 𝑐))))
14 oveq2 7263 . . . . . 6 (𝑐 = 𝑍 → (𝑋 + 𝑐) = (𝑋 + 𝑍))
15 oveq2 7263 . . . . . 6 (𝑐 = 𝑍 → (𝑌 + 𝑐) = (𝑌 + 𝑍))
1614, 15breq12d 5083 . . . . 5 (𝑐 = 𝑍 → ((𝑋 + 𝑐) (𝑌 + 𝑐) ↔ (𝑋 + 𝑍) (𝑌 + 𝑍)))
1716imbi2d 340 . . . 4 (𝑐 = 𝑍 → ((𝑋 𝑌 → (𝑋 + 𝑐) (𝑌 + 𝑐)) ↔ (𝑋 𝑌 → (𝑋 + 𝑍) (𝑌 + 𝑍))))
189, 13, 17rspc3v 3565 . . 3 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑎𝐵𝑏𝐵𝑐𝐵 (𝑎 𝑏 → (𝑎 + 𝑐) (𝑏 + 𝑐)) → (𝑋 𝑌 → (𝑋 + 𝑍) (𝑌 + 𝑍))))
195, 18mpan9 506 . 2 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 + 𝑍) (𝑌 + 𝑍)))
20193impia 1115 1 ((𝑀 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 + 𝑍) (𝑌 + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  lecple 16895  Tosetctos 18049  Mndcmnd 18300  oMndcomnd 31225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-omnd 31227
This theorem is referenced by:  omndaddr  31235  omndadd2d  31236  omndadd2rd  31237  submomnd  31238  omndmul2  31240  omndmul3  31241  ogrpinv0le  31243  ogrpsub  31244  ogrpaddlt  31245  orngsqr  31405  ornglmulle  31406  orngrmulle  31407
  Copyright terms: Public domain W3C validator