Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submomnd Structured version   Visualization version   GIF version

Theorem submomnd 31345
Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
submomnd ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ oMnd)

Proof of Theorem submomnd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ Mnd)
2 omndtos 31340 . . . 4 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
32adantr 481 . . 3 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → 𝑀 ∈ Toset)
4 reldmress 16954 . . . . . . . 8 Rel dom ↾s
54ovprc2 7312 . . . . . . 7 𝐴 ∈ V → (𝑀s 𝐴) = ∅)
65fveq2d 6775 . . . . . 6 𝐴 ∈ V → (Base‘(𝑀s 𝐴)) = (Base‘∅))
76adantl 482 . . . . 5 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) = (Base‘∅))
8 base0 16928 . . . . 5 ∅ = (Base‘∅)
97, 8eqtr4di 2798 . . . 4 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) = ∅)
10 eqid 2740 . . . . . . . 8 (Base‘(𝑀s 𝐴)) = (Base‘(𝑀s 𝐴))
11 eqid 2740 . . . . . . . 8 (0g‘(𝑀s 𝐴)) = (0g‘(𝑀s 𝐴))
1210, 11mndidcl 18411 . . . . . . 7 ((𝑀s 𝐴) ∈ Mnd → (0g‘(𝑀s 𝐴)) ∈ (Base‘(𝑀s 𝐴)))
1312ne0d 4275 . . . . . 6 ((𝑀s 𝐴) ∈ Mnd → (Base‘(𝑀s 𝐴)) ≠ ∅)
1413ad2antlr 724 . . . . 5 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) ≠ ∅)
1514neneqd 2950 . . . 4 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → ¬ (Base‘(𝑀s 𝐴)) = ∅)
169, 15condan 815 . . 3 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → 𝐴 ∈ V)
17 resstos 31254 . . 3 ((𝑀 ∈ Toset ∧ 𝐴 ∈ V) → (𝑀s 𝐴) ∈ Toset)
183, 16, 17syl2anc 584 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ Toset)
19 simplll 772 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑀 ∈ oMnd)
20 eqid 2740 . . . . . . . . . . 11 (𝑀s 𝐴) = (𝑀s 𝐴)
21 eqid 2740 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
2220, 21ressbas 16958 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∩ (Base‘𝑀)) = (Base‘(𝑀s 𝐴)))
23 inss2 4169 . . . . . . . . . 10 (𝐴 ∩ (Base‘𝑀)) ⊆ (Base‘𝑀)
2422, 23eqsstrrdi 3981 . . . . . . . . 9 (𝐴 ∈ V → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
2516, 24syl 17 . . . . . . . 8 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
2625ad2antrr 723 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
27 simplr1 1214 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎 ∈ (Base‘(𝑀s 𝐴)))
2826, 27sseldd 3927 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎 ∈ (Base‘𝑀))
29 simplr2 1215 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑏 ∈ (Base‘(𝑀s 𝐴)))
3026, 29sseldd 3927 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑏 ∈ (Base‘𝑀))
31 simplr3 1216 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑐 ∈ (Base‘(𝑀s 𝐴)))
3226, 31sseldd 3927 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑐 ∈ (Base‘𝑀))
33 eqid 2740 . . . . . . . . . . 11 (le‘𝑀) = (le‘𝑀)
3420, 33ressle 17101 . . . . . . . . . 10 (𝐴 ∈ V → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3516, 34syl 17 . . . . . . . . 9 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3635adantr 481 . . . . . . . 8 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3736breqd 5090 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(le‘𝑀)𝑏𝑎(le‘(𝑀s 𝐴))𝑏))
3837biimpar 478 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎(le‘𝑀)𝑏)
39 eqid 2740 . . . . . . 7 (+g𝑀) = (+g𝑀)
4021, 33, 39omndadd 31341 . . . . . 6 ((𝑀 ∈ oMnd ∧ (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀) ∧ 𝑐 ∈ (Base‘𝑀)) ∧ 𝑎(le‘𝑀)𝑏) → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))
4119, 28, 30, 32, 38, 40syl131anc 1382 . . . . 5 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))
4216adantr 481 . . . . . . . . 9 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → 𝐴 ∈ V)
4320, 39ressplusg 17011 . . . . . . . . 9 (𝐴 ∈ V → (+g𝑀) = (+g‘(𝑀s 𝐴)))
4442, 43syl 17 . . . . . . . 8 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (+g𝑀) = (+g‘(𝑀s 𝐴)))
4544oveqd 7289 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(+g𝑀)𝑐) = (𝑎(+g‘(𝑀s 𝐴))𝑐))
4642, 34syl 17 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
4744oveqd 7289 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑏(+g𝑀)𝑐) = (𝑏(+g‘(𝑀s 𝐴))𝑐))
4845, 46, 47breq123d 5093 . . . . . 6 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → ((𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐) ↔ (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
4948adantr 481 . . . . 5 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → ((𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐) ↔ (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
5041, 49mpbid 231 . . . 4 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐))
5150ex 413 . . 3 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
5251ralrimivvva 3118 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → ∀𝑎 ∈ (Base‘(𝑀s 𝐴))∀𝑏 ∈ (Base‘(𝑀s 𝐴))∀𝑐 ∈ (Base‘(𝑀s 𝐴))(𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
53 eqid 2740 . . 3 (+g‘(𝑀s 𝐴)) = (+g‘(𝑀s 𝐴))
54 eqid 2740 . . 3 (le‘(𝑀s 𝐴)) = (le‘(𝑀s 𝐴))
5510, 53, 54isomnd 31336 . 2 ((𝑀s 𝐴) ∈ oMnd ↔ ((𝑀s 𝐴) ∈ Mnd ∧ (𝑀s 𝐴) ∈ Toset ∧ ∀𝑎 ∈ (Base‘(𝑀s 𝐴))∀𝑏 ∈ (Base‘(𝑀s 𝐴))∀𝑐 ∈ (Base‘(𝑀s 𝐴))(𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐))))
561, 18, 52, 55syl3anbrc 1342 1 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ oMnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  Vcvv 3431  cin 3891  wss 3892  c0 4262   class class class wbr 5079  cfv 6432  (class class class)co 7272  Basecbs 16923  s cress 16952  +gcplusg 16973  lecple 16980  0gc0g 17161  Tosetctos 18145  Mndcmnd 18396  oMndcomnd 31332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-dec 12449  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-ple 16993  df-0g 17163  df-poset 18042  df-toset 18146  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-omnd 31334
This theorem is referenced by:  suborng  31523  nn0omnd  31554
  Copyright terms: Public domain W3C validator