Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submomnd Structured version   Visualization version   GIF version

Theorem submomnd 33031
Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
submomnd ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ oMnd)

Proof of Theorem submomnd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ Mnd)
2 omndtos 33026 . . . 4 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
32adantr 480 . . 3 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → 𝑀 ∈ Toset)
4 reldmress 17209 . . . . . . . 8 Rel dom ↾s
54ovprc2 7430 . . . . . . 7 𝐴 ∈ V → (𝑀s 𝐴) = ∅)
65fveq2d 6865 . . . . . 6 𝐴 ∈ V → (Base‘(𝑀s 𝐴)) = (Base‘∅))
76adantl 481 . . . . 5 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) = (Base‘∅))
8 base0 17191 . . . . 5 ∅ = (Base‘∅)
97, 8eqtr4di 2783 . . . 4 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) = ∅)
10 eqid 2730 . . . . . . . 8 (Base‘(𝑀s 𝐴)) = (Base‘(𝑀s 𝐴))
11 eqid 2730 . . . . . . . 8 (0g‘(𝑀s 𝐴)) = (0g‘(𝑀s 𝐴))
1210, 11mndidcl 18683 . . . . . . 7 ((𝑀s 𝐴) ∈ Mnd → (0g‘(𝑀s 𝐴)) ∈ (Base‘(𝑀s 𝐴)))
1312ne0d 4308 . . . . . 6 ((𝑀s 𝐴) ∈ Mnd → (Base‘(𝑀s 𝐴)) ≠ ∅)
1413ad2antlr 727 . . . . 5 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) ≠ ∅)
1514neneqd 2931 . . . 4 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → ¬ (Base‘(𝑀s 𝐴)) = ∅)
169, 15condan 817 . . 3 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → 𝐴 ∈ V)
17 resstos 32900 . . 3 ((𝑀 ∈ Toset ∧ 𝐴 ∈ V) → (𝑀s 𝐴) ∈ Toset)
183, 16, 17syl2anc 584 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ Toset)
19 simplll 774 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑀 ∈ oMnd)
20 eqid 2730 . . . . . . . . . . 11 (𝑀s 𝐴) = (𝑀s 𝐴)
21 eqid 2730 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
2220, 21ressbas 17213 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∩ (Base‘𝑀)) = (Base‘(𝑀s 𝐴)))
23 inss2 4204 . . . . . . . . . 10 (𝐴 ∩ (Base‘𝑀)) ⊆ (Base‘𝑀)
2422, 23eqsstrrdi 3995 . . . . . . . . 9 (𝐴 ∈ V → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
2516, 24syl 17 . . . . . . . 8 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
2625ad2antrr 726 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
27 simplr1 1216 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎 ∈ (Base‘(𝑀s 𝐴)))
2826, 27sseldd 3950 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎 ∈ (Base‘𝑀))
29 simplr2 1217 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑏 ∈ (Base‘(𝑀s 𝐴)))
3026, 29sseldd 3950 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑏 ∈ (Base‘𝑀))
31 simplr3 1218 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑐 ∈ (Base‘(𝑀s 𝐴)))
3226, 31sseldd 3950 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑐 ∈ (Base‘𝑀))
33 eqid 2730 . . . . . . . . . . 11 (le‘𝑀) = (le‘𝑀)
3420, 33ressle 17350 . . . . . . . . . 10 (𝐴 ∈ V → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3516, 34syl 17 . . . . . . . . 9 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3635adantr 480 . . . . . . . 8 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3736breqd 5121 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(le‘𝑀)𝑏𝑎(le‘(𝑀s 𝐴))𝑏))
3837biimpar 477 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎(le‘𝑀)𝑏)
39 eqid 2730 . . . . . . 7 (+g𝑀) = (+g𝑀)
4021, 33, 39omndadd 33027 . . . . . 6 ((𝑀 ∈ oMnd ∧ (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀) ∧ 𝑐 ∈ (Base‘𝑀)) ∧ 𝑎(le‘𝑀)𝑏) → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))
4119, 28, 30, 32, 38, 40syl131anc 1385 . . . . 5 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))
4216adantr 480 . . . . . . . . 9 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → 𝐴 ∈ V)
4320, 39ressplusg 17261 . . . . . . . . 9 (𝐴 ∈ V → (+g𝑀) = (+g‘(𝑀s 𝐴)))
4442, 43syl 17 . . . . . . . 8 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (+g𝑀) = (+g‘(𝑀s 𝐴)))
4544oveqd 7407 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(+g𝑀)𝑐) = (𝑎(+g‘(𝑀s 𝐴))𝑐))
4642, 34syl 17 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
4744oveqd 7407 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑏(+g𝑀)𝑐) = (𝑏(+g‘(𝑀s 𝐴))𝑐))
4845, 46, 47breq123d 5124 . . . . . 6 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → ((𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐) ↔ (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
4948adantr 480 . . . . 5 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → ((𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐) ↔ (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
5041, 49mpbid 232 . . . 4 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐))
5150ex 412 . . 3 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
5251ralrimivvva 3184 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → ∀𝑎 ∈ (Base‘(𝑀s 𝐴))∀𝑏 ∈ (Base‘(𝑀s 𝐴))∀𝑐 ∈ (Base‘(𝑀s 𝐴))(𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
53 eqid 2730 . . 3 (+g‘(𝑀s 𝐴)) = (+g‘(𝑀s 𝐴))
54 eqid 2730 . . 3 (le‘(𝑀s 𝐴)) = (le‘(𝑀s 𝐴))
5510, 53, 54isomnd 33022 . 2 ((𝑀s 𝐴) ∈ oMnd ↔ ((𝑀s 𝐴) ∈ Mnd ∧ (𝑀s 𝐴) ∈ Toset ∧ ∀𝑎 ∈ (Base‘(𝑀s 𝐴))∀𝑏 ∈ (Base‘(𝑀s 𝐴))∀𝑐 ∈ (Base‘(𝑀s 𝐴))(𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐))))
561, 18, 52, 55syl3anbrc 1344 1 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ oMnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cin 3916  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  +gcplusg 17227  lecple 17234  0gc0g 17409  Tosetctos 18382  Mndcmnd 18668  oMndcomnd 33018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-dec 12657  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-ple 17247  df-0g 17411  df-poset 18281  df-toset 18383  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-omnd 33020
This theorem is referenced by:  suborng  33300  nn0omnd  33323
  Copyright terms: Public domain W3C validator