Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submomnd Structured version   Visualization version   GIF version

Theorem submomnd 30761
Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
submomnd ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ oMnd)

Proof of Theorem submomnd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ Mnd)
2 omndtos 30756 . . . 4 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
32adantr 484 . . 3 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → 𝑀 ∈ Toset)
4 reldmress 16542 . . . . . . . 8 Rel dom ↾s
54ovprc2 7175 . . . . . . 7 𝐴 ∈ V → (𝑀s 𝐴) = ∅)
65fveq2d 6649 . . . . . 6 𝐴 ∈ V → (Base‘(𝑀s 𝐴)) = (Base‘∅))
76adantl 485 . . . . 5 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) = (Base‘∅))
8 base0 16528 . . . . 5 ∅ = (Base‘∅)
97, 8eqtr4di 2851 . . . 4 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) = ∅)
10 eqid 2798 . . . . . . . 8 (Base‘(𝑀s 𝐴)) = (Base‘(𝑀s 𝐴))
11 eqid 2798 . . . . . . . 8 (0g‘(𝑀s 𝐴)) = (0g‘(𝑀s 𝐴))
1210, 11mndidcl 17918 . . . . . . 7 ((𝑀s 𝐴) ∈ Mnd → (0g‘(𝑀s 𝐴)) ∈ (Base‘(𝑀s 𝐴)))
1312ne0d 4251 . . . . . 6 ((𝑀s 𝐴) ∈ Mnd → (Base‘(𝑀s 𝐴)) ≠ ∅)
1413ad2antlr 726 . . . . 5 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) ≠ ∅)
1514neneqd 2992 . . . 4 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → ¬ (Base‘(𝑀s 𝐴)) = ∅)
169, 15condan 817 . . 3 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → 𝐴 ∈ V)
17 resstos 30673 . . 3 ((𝑀 ∈ Toset ∧ 𝐴 ∈ V) → (𝑀s 𝐴) ∈ Toset)
183, 16, 17syl2anc 587 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ Toset)
19 simplll 774 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑀 ∈ oMnd)
20 eqid 2798 . . . . . . . . . . 11 (𝑀s 𝐴) = (𝑀s 𝐴)
21 eqid 2798 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
2220, 21ressbas 16546 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∩ (Base‘𝑀)) = (Base‘(𝑀s 𝐴)))
23 inss2 4156 . . . . . . . . . 10 (𝐴 ∩ (Base‘𝑀)) ⊆ (Base‘𝑀)
2422, 23eqsstrrdi 3970 . . . . . . . . 9 (𝐴 ∈ V → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
2516, 24syl 17 . . . . . . . 8 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
2625ad2antrr 725 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
27 simplr1 1212 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎 ∈ (Base‘(𝑀s 𝐴)))
2826, 27sseldd 3916 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎 ∈ (Base‘𝑀))
29 simplr2 1213 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑏 ∈ (Base‘(𝑀s 𝐴)))
3026, 29sseldd 3916 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑏 ∈ (Base‘𝑀))
31 simplr3 1214 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑐 ∈ (Base‘(𝑀s 𝐴)))
3226, 31sseldd 3916 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑐 ∈ (Base‘𝑀))
33 eqid 2798 . . . . . . . . . . 11 (le‘𝑀) = (le‘𝑀)
3420, 33ressle 16664 . . . . . . . . . 10 (𝐴 ∈ V → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3516, 34syl 17 . . . . . . . . 9 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3635adantr 484 . . . . . . . 8 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3736breqd 5041 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(le‘𝑀)𝑏𝑎(le‘(𝑀s 𝐴))𝑏))
3837biimpar 481 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎(le‘𝑀)𝑏)
39 eqid 2798 . . . . . . 7 (+g𝑀) = (+g𝑀)
4021, 33, 39omndadd 30757 . . . . . 6 ((𝑀 ∈ oMnd ∧ (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀) ∧ 𝑐 ∈ (Base‘𝑀)) ∧ 𝑎(le‘𝑀)𝑏) → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))
4119, 28, 30, 32, 38, 40syl131anc 1380 . . . . 5 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))
4216adantr 484 . . . . . . . . 9 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → 𝐴 ∈ V)
4320, 39ressplusg 16604 . . . . . . . . 9 (𝐴 ∈ V → (+g𝑀) = (+g‘(𝑀s 𝐴)))
4442, 43syl 17 . . . . . . . 8 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (+g𝑀) = (+g‘(𝑀s 𝐴)))
4544oveqd 7152 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(+g𝑀)𝑐) = (𝑎(+g‘(𝑀s 𝐴))𝑐))
4642, 34syl 17 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
4744oveqd 7152 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑏(+g𝑀)𝑐) = (𝑏(+g‘(𝑀s 𝐴))𝑐))
4845, 46, 47breq123d 5044 . . . . . 6 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → ((𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐) ↔ (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
4948adantr 484 . . . . 5 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → ((𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐) ↔ (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
5041, 49mpbid 235 . . . 4 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐))
5150ex 416 . . 3 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
5251ralrimivvva 3157 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → ∀𝑎 ∈ (Base‘(𝑀s 𝐴))∀𝑏 ∈ (Base‘(𝑀s 𝐴))∀𝑐 ∈ (Base‘(𝑀s 𝐴))(𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
53 eqid 2798 . . 3 (+g‘(𝑀s 𝐴)) = (+g‘(𝑀s 𝐴))
54 eqid 2798 . . 3 (le‘(𝑀s 𝐴)) = (le‘(𝑀s 𝐴))
5510, 53, 54isomnd 30752 . 2 ((𝑀s 𝐴) ∈ oMnd ↔ ((𝑀s 𝐴) ∈ Mnd ∧ (𝑀s 𝐴) ∈ Toset ∧ ∀𝑎 ∈ (Base‘(𝑀s 𝐴))∀𝑏 ∈ (Base‘(𝑀s 𝐴))∀𝑐 ∈ (Base‘(𝑀s 𝐴))(𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐))))
561, 18, 52, 55syl3anbrc 1340 1 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ oMnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cin 3880  wss 3881  c0 4243   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  +gcplusg 16557  lecple 16564  0gc0g 16705  Tosetctos 17635  Mndcmnd 17903  oMndcomnd 30748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-dec 12087  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-ple 16577  df-0g 16707  df-poset 17548  df-toset 17636  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-omnd 30750
This theorem is referenced by:  suborng  30939  nn0omnd  30965
  Copyright terms: Public domain W3C validator