| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringsrg | Structured version Visualization version GIF version | ||
| Description: Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
| Ref | Expression |
|---|---|
| ringsrg | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcmn 20206 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
| 2 | eqid 2731 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | 2 | ringmgp 20163 | . 2 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 4 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 7 | 4, 2, 5, 6 | isring 20161 | . . . 4 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 8 | 7 | simp3bi 1147 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
| 9 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 10 | 4, 6, 9 | ringlz 20217 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅)) |
| 11 | 4, 6, 9 | ringrz 20218 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 12 | 10, 11 | jca 511 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
| 13 | 12 | ralrimiva 3124 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)(((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) |
| 14 | r19.26 3092 | . . 3 ⊢ (∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))) ↔ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ ∀𝑥 ∈ (Base‘𝑅)(((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)))) | |
| 15 | 8, 13, 14 | sylanbrc 583 | . 2 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)))) |
| 16 | 4, 2, 5, 6, 9 | issrg 20112 | . 2 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))))) |
| 17 | 1, 3, 15, 16 | syl3anbrc 1344 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 +gcplusg 17167 .rcmulr 17168 0gc0g 17349 Mndcmnd 18648 Grpcgrp 18852 CMndccmn 19698 mulGrpcmgp 20064 SRingcsrg 20110 Ringcrg 20157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-plusg 17180 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-minusg 18856 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-srg 20111 df-ring 20159 |
| This theorem is referenced by: crngbinom 20259 ring1zr 20697 mplcoe5lem 21980 mdet1 22522 lmodslmd 33180 rhmqusspan 42284 |
| Copyright terms: Public domain | W3C validator |