MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringsrg Structured version   Visualization version   GIF version

Theorem ringsrg 19335
Description: Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
ringsrg (𝑅 ∈ Ring → 𝑅 ∈ SRing)

Proof of Theorem ringsrg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringcmn 19327 . 2 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2 eqid 2798 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
32ringmgp 19296 . 2 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
4 eqid 2798 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2798 . . . . 5 (+g𝑅) = (+g𝑅)
6 eqid 2798 . . . . 5 (.r𝑅) = (.r𝑅)
74, 2, 5, 6isring 19294 . . . 4 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
87simp3bi 1144 . . 3 (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))))
9 eqid 2798 . . . . . 6 (0g𝑅) = (0g𝑅)
104, 6, 9ringlz 19333 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (0g𝑅))
114, 6, 9ringrz 19334 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
1210, 11jca 515 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))
1312ralrimiva 3149 . . 3 (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)(((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))
14 r19.26 3137 . . 3 (∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))) ↔ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ ∀𝑥 ∈ (Base‘𝑅)(((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))))
158, 13, 14sylanbrc 586 . 2 (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))))
164, 2, 5, 6, 9issrg 19250 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))))
171, 3, 15, 16syl3anbrc 1340 1 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  Mndcmnd 17903  Grpcgrp 18095  CMndccmn 18898  mulGrpcmgp 19232  SRingcsrg 19248  Ringcrg 19290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292
This theorem is referenced by:  crngbinom  19367  ring1zr  20041  mplcoe5lem  20707  mdet1  21206  lmodslmd  30882
  Copyright terms: Public domain W3C validator