MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringsrg Structured version   Visualization version   GIF version

Theorem ringsrg 19330
Description: Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
ringsrg (𝑅 ∈ Ring → 𝑅 ∈ SRing)

Proof of Theorem ringsrg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringcmn 19322 . 2 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2 eqid 2824 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
32ringmgp 19294 . 2 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
4 eqid 2824 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2824 . . . . 5 (+g𝑅) = (+g𝑅)
6 eqid 2824 . . . . 5 (.r𝑅) = (.r𝑅)
74, 2, 5, 6isring 19292 . . . 4 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
87simp3bi 1144 . . 3 (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))))
9 eqid 2824 . . . . . 6 (0g𝑅) = (0g𝑅)
104, 6, 9ringlz 19328 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)𝑥) = (0g𝑅))
114, 6, 9ringrz 19329 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))
1210, 11jca 515 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))
1312ralrimiva 3176 . . 3 (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)(((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))
14 r19.26 3164 . . 3 (∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))) ↔ (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ ∀𝑥 ∈ (Base‘𝑅)(((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))))
158, 13, 14sylanbrc 586 . 2 (𝑅 ∈ Ring → ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅))))
164, 2, 5, 6, 9issrg 19248 . 2 (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧))) ∧ (((0g𝑅)(.r𝑅)𝑥) = (0g𝑅) ∧ (𝑥(.r𝑅)(0g𝑅)) = (0g𝑅)))))
171, 3, 15, 16syl3anbrc 1340 1 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3132  cfv 6338  (class class class)co 7140  Basecbs 16474  +gcplusg 16556  .rcmulr 16557  0gc0g 16704  Mndcmnd 17902  Grpcgrp 18094  CMndccmn 18897  mulGrpcmgp 19230  SRingcsrg 19246  Ringcrg 19288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-nn 11626  df-2 11688  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-plusg 16569  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-srg 19247  df-ring 19290
This theorem is referenced by:  crngbinom  19362  ring1zr  20036  mplcoe5lem  20236  mdet1  21198  lmodslmd  30852
  Copyright terms: Public domain W3C validator