Step | Hyp | Ref
| Expression |
1 | | cnring 20532 |
. . . 4
⊢
ℂfld ∈ Ring |
2 | | ringcmn 19735 |
. . . 4
⊢
(ℂfld ∈ Ring → ℂfld ∈
CMnd) |
3 | 1, 2 | ax-mp 5 |
. . 3
⊢
ℂfld ∈ CMnd |
4 | | nn0subm 20565 |
. . 3
⊢
ℕ0 ∈
(SubMnd‘ℂfld) |
5 | | eqid 2738 |
. . . 4
⊢
(ℂfld ↾s ℕ0) =
(ℂfld ↾s
ℕ0) |
6 | 5 | submcmn 19354 |
. . 3
⊢
((ℂfld ∈ CMnd ∧ ℕ0 ∈
(SubMnd‘ℂfld)) → (ℂfld
↾s ℕ0) ∈ CMnd) |
7 | 3, 4, 6 | mp2an 688 |
. 2
⊢
(ℂfld ↾s ℕ0) ∈
CMnd |
8 | | nn0ex 12169 |
. . . 4
⊢
ℕ0 ∈ V |
9 | | eqid 2738 |
. . . . 5
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
10 | 5, 9 | mgpress 19650 |
. . . 4
⊢
((ℂfld ∈ CMnd ∧ ℕ0 ∈ V)
→ ((mulGrp‘ℂfld) ↾s
ℕ0) = (mulGrp‘(ℂfld ↾s
ℕ0))) |
11 | 3, 8, 10 | mp2an 688 |
. . 3
⊢
((mulGrp‘ℂfld) ↾s
ℕ0) = (mulGrp‘(ℂfld ↾s
ℕ0)) |
12 | | nn0sscn 12168 |
. . . . 5
⊢
ℕ0 ⊆ ℂ |
13 | | 1nn0 12179 |
. . . . 5
⊢ 1 ∈
ℕ0 |
14 | | nn0mulcl 12199 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑥 · 𝑦) ∈
ℕ0) |
15 | 14 | rgen2 3126 |
. . . . 5
⊢
∀𝑥 ∈
ℕ0 ∀𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0 |
16 | 9 | ringmgp 19704 |
. . . . . . 7
⊢
(ℂfld ∈ Ring →
(mulGrp‘ℂfld) ∈ Mnd) |
17 | 1, 16 | ax-mp 5 |
. . . . . 6
⊢
(mulGrp‘ℂfld) ∈ Mnd |
18 | | cnfldbas 20514 |
. . . . . . . 8
⊢ ℂ =
(Base‘ℂfld) |
19 | 9, 18 | mgpbas 19641 |
. . . . . . 7
⊢ ℂ =
(Base‘(mulGrp‘ℂfld)) |
20 | | cnfld1 20535 |
. . . . . . . 8
⊢ 1 =
(1r‘ℂfld) |
21 | 9, 20 | ringidval 19654 |
. . . . . . 7
⊢ 1 =
(0g‘(mulGrp‘ℂfld)) |
22 | | cnfldmul 20516 |
. . . . . . . 8
⊢ ·
= (.r‘ℂfld) |
23 | 9, 22 | mgpplusg 19639 |
. . . . . . 7
⊢ ·
= (+g‘(mulGrp‘ℂfld)) |
24 | 19, 21, 23 | issubm 18357 |
. . . . . 6
⊢
((mulGrp‘ℂfld) ∈ Mnd →
(ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld))
↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 ∀𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈
ℕ0))) |
25 | 17, 24 | ax-mp 5 |
. . . . 5
⊢
(ℕ0 ∈
(SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0
⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0
∀𝑦 ∈
ℕ0 (𝑥
· 𝑦) ∈
ℕ0)) |
26 | 12, 13, 15, 25 | mpbir3an 1339 |
. . . 4
⊢
ℕ0 ∈
(SubMnd‘(mulGrp‘ℂfld)) |
27 | | eqid 2738 |
. . . . 5
⊢
((mulGrp‘ℂfld) ↾s
ℕ0) = ((mulGrp‘ℂfld)
↾s ℕ0) |
28 | 27 | submmnd 18367 |
. . . 4
⊢
(ℕ0 ∈
(SubMnd‘(mulGrp‘ℂfld)) →
((mulGrp‘ℂfld) ↾s ℕ0)
∈ Mnd) |
29 | 26, 28 | ax-mp 5 |
. . 3
⊢
((mulGrp‘ℂfld) ↾s
ℕ0) ∈ Mnd |
30 | 11, 29 | eqeltrri 2836 |
. 2
⊢
(mulGrp‘(ℂfld ↾s
ℕ0)) ∈ Mnd |
31 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ0
∧ (𝑦 ∈
ℕ0 ∧ 𝑧
∈ ℕ0)) → 𝑥 ∈ ℕ0) |
32 | 31 | nn0cnd 12225 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0
∧ (𝑦 ∈
ℕ0 ∧ 𝑧
∈ ℕ0)) → 𝑥 ∈ ℂ) |
33 | | simprl 767 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ0
∧ (𝑦 ∈
ℕ0 ∧ 𝑧
∈ ℕ0)) → 𝑦 ∈ ℕ0) |
34 | 33 | nn0cnd 12225 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0
∧ (𝑦 ∈
ℕ0 ∧ 𝑧
∈ ℕ0)) → 𝑦 ∈ ℂ) |
35 | | simprr 769 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ0
∧ (𝑦 ∈
ℕ0 ∧ 𝑧
∈ ℕ0)) → 𝑧 ∈ ℕ0) |
36 | 35 | nn0cnd 12225 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0
∧ (𝑦 ∈
ℕ0 ∧ 𝑧
∈ ℕ0)) → 𝑧 ∈ ℂ) |
37 | 32, 34, 36 | adddid 10930 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ0
∧ (𝑦 ∈
ℕ0 ∧ 𝑧
∈ ℕ0)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
38 | 32, 34, 36 | adddird 10931 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ0
∧ (𝑦 ∈
ℕ0 ∧ 𝑧
∈ ℕ0)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
39 | 37, 38 | jca 511 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0
∧ (𝑦 ∈
ℕ0 ∧ 𝑧
∈ ℕ0)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
40 | 39 | ralrimivva 3114 |
. . . 4
⊢ (𝑥 ∈ ℕ0
→ ∀𝑦 ∈
ℕ0 ∀𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
41 | | nn0cn 12173 |
. . . . 5
⊢ (𝑥 ∈ ℕ0
→ 𝑥 ∈
ℂ) |
42 | 41 | mul02d 11103 |
. . . 4
⊢ (𝑥 ∈ ℕ0
→ (0 · 𝑥) =
0) |
43 | 41 | mul01d 11104 |
. . . 4
⊢ (𝑥 ∈ ℕ0
→ (𝑥 · 0) =
0) |
44 | 40, 42, 43 | jca32 515 |
. . 3
⊢ (𝑥 ∈ ℕ0
→ (∀𝑦 ∈
ℕ0 ∀𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))) |
45 | 44 | rgen 3073 |
. 2
⊢
∀𝑥 ∈
ℕ0 (∀𝑦 ∈ ℕ0 ∀𝑧 ∈ ℕ0
((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)) |
46 | 5, 18 | ressbas2 16875 |
. . . 4
⊢
(ℕ0 ⊆ ℂ → ℕ0 =
(Base‘(ℂfld ↾s
ℕ0))) |
47 | 12, 46 | ax-mp 5 |
. . 3
⊢
ℕ0 = (Base‘(ℂfld
↾s ℕ0)) |
48 | | eqid 2738 |
. . 3
⊢
(mulGrp‘(ℂfld ↾s
ℕ0)) = (mulGrp‘(ℂfld
↾s ℕ0)) |
49 | | cnfldadd 20515 |
. . . . 5
⊢ + =
(+g‘ℂfld) |
50 | 5, 49 | ressplusg 16926 |
. . . 4
⊢
(ℕ0 ∈ V → + =
(+g‘(ℂfld ↾s
ℕ0))) |
51 | 8, 50 | ax-mp 5 |
. . 3
⊢ + =
(+g‘(ℂfld ↾s
ℕ0)) |
52 | 5, 22 | ressmulr 16943 |
. . . 4
⊢
(ℕ0 ∈ V → · =
(.r‘(ℂfld ↾s
ℕ0))) |
53 | 8, 52 | ax-mp 5 |
. . 3
⊢ ·
= (.r‘(ℂfld ↾s
ℕ0)) |
54 | | ringmnd 19708 |
. . . . 5
⊢
(ℂfld ∈ Ring → ℂfld ∈
Mnd) |
55 | 1, 54 | ax-mp 5 |
. . . 4
⊢
ℂfld ∈ Mnd |
56 | | 0nn0 12178 |
. . . 4
⊢ 0 ∈
ℕ0 |
57 | | cnfld0 20534 |
. . . . 5
⊢ 0 =
(0g‘ℂfld) |
58 | 5, 18, 57 | ress0g 18328 |
. . . 4
⊢
((ℂfld ∈ Mnd ∧ 0 ∈ ℕ0
∧ ℕ0 ⊆ ℂ) → 0 =
(0g‘(ℂfld ↾s
ℕ0))) |
59 | 55, 56, 12, 58 | mp3an 1459 |
. . 3
⊢ 0 =
(0g‘(ℂfld ↾s
ℕ0)) |
60 | 47, 48, 51, 53, 59 | issrg 19658 |
. 2
⊢
((ℂfld ↾s ℕ0) ∈
SRing ↔ ((ℂfld ↾s ℕ0)
∈ CMnd ∧ (mulGrp‘(ℂfld ↾s
ℕ0)) ∈ Mnd ∧ ∀𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0
∀𝑧 ∈
ℕ0 ((𝑥
· (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))) |
61 | 7, 30, 45, 60 | mpbir3an 1339 |
1
⊢
(ℂfld ↾s ℕ0) ∈
SRing |