MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0srg Structured version   Visualization version   GIF version

Theorem nn0srg 20176
Description: The nonnegative integers form a semiring (commutative by subcmn 18595). (Contributed by Thierry Arnoux, 1-May-2018.)
Assertion
Ref Expression
nn0srg (ℂflds0) ∈ SRing

Proof of Theorem nn0srg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 20128 . . . 4 fld ∈ Ring
2 ringcmn 18935 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
31, 2ax-mp 5 . . 3 fld ∈ CMnd
4 nn0subm 20161 . . 3 0 ∈ (SubMnd‘ℂfld)
5 eqid 2825 . . . 4 (ℂflds0) = (ℂflds0)
65submcmn 18596 . . 3 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
73, 4, 6mp2an 683 . 2 (ℂflds0) ∈ CMnd
8 nn0ex 11625 . . . 4 0 ∈ V
9 eqid 2825 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
105, 9mgpress 18854 . . . 4 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ V) → ((mulGrp‘ℂfld) ↾s0) = (mulGrp‘(ℂflds0)))
113, 8, 10mp2an 683 . . 3 ((mulGrp‘ℂfld) ↾s0) = (mulGrp‘(ℂflds0))
12 nn0sscn 11623 . . . . 5 0 ⊆ ℂ
13 1nn0 11636 . . . . 5 1 ∈ ℕ0
14 nn0mulcl 11656 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 · 𝑦) ∈ ℕ0)
1514rgen2a 3186 . . . . 5 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0
169ringmgp 18907 . . . . . . 7 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
171, 16ax-mp 5 . . . . . 6 (mulGrp‘ℂfld) ∈ Mnd
18 cnfldbas 20110 . . . . . . . 8 ℂ = (Base‘ℂfld)
199, 18mgpbas 18849 . . . . . . 7 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 20131 . . . . . . . 8 1 = (1r‘ℂfld)
219, 20ringidval 18857 . . . . . . 7 1 = (0g‘(mulGrp‘ℂfld))
22 cnfldmul 20112 . . . . . . . 8 · = (.r‘ℂfld)
239, 22mgpplusg 18847 . . . . . . 7 · = (+g‘(mulGrp‘ℂfld))
2419, 21, 23issubm 17700 . . . . . 6 ((mulGrp‘ℂfld) ∈ Mnd → (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0)))
2517, 24ax-mp 5 . . . . 5 (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0))
2612, 13, 15, 25mpbir3an 1445 . . . 4 0 ∈ (SubMnd‘(mulGrp‘ℂfld))
27 eqid 2825 . . . . 5 ((mulGrp‘ℂfld) ↾s0) = ((mulGrp‘ℂfld) ↾s0)
2827submmnd 17707 . . . 4 (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) → ((mulGrp‘ℂfld) ↾s0) ∈ Mnd)
2926, 28ax-mp 5 . . 3 ((mulGrp‘ℂfld) ↾s0) ∈ Mnd
3011, 29eqeltrri 2903 . 2 (mulGrp‘(ℂflds0)) ∈ Mnd
31 simpl 476 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑥 ∈ ℕ0)
3231nn0cnd 11680 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑥 ∈ ℂ)
33 simprl 787 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
3433nn0cnd 11680 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑦 ∈ ℂ)
35 simprr 789 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑧 ∈ ℕ0)
3635nn0cnd 11680 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑧 ∈ ℂ)
3732, 34, 36adddid 10381 . . . . . 6 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
3832, 34, 36adddird 10382 . . . . . 6 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
3937, 38jca 507 . . . . 5 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4039ralrimivva 3180 . . . 4 (𝑥 ∈ ℕ0 → ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
41 nn0cn 11629 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
4241mul02d 10553 . . . 4 (𝑥 ∈ ℕ0 → (0 · 𝑥) = 0)
4341mul01d 10554 . . . 4 (𝑥 ∈ ℕ0 → (𝑥 · 0) = 0)
4440, 42, 43jca32 511 . . 3 (𝑥 ∈ ℕ0 → (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))
4544rgen 3131 . 2 𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))
465, 18ressbas2 16294 . . . 4 (ℕ0 ⊆ ℂ → ℕ0 = (Base‘(ℂflds0)))
4712, 46ax-mp 5 . . 3 0 = (Base‘(ℂflds0))
48 eqid 2825 . . 3 (mulGrp‘(ℂflds0)) = (mulGrp‘(ℂflds0))
49 cnfldadd 20111 . . . . 5 + = (+g‘ℂfld)
505, 49ressplusg 16352 . . . 4 (ℕ0 ∈ V → + = (+g‘(ℂflds0)))
518, 50ax-mp 5 . . 3 + = (+g‘(ℂflds0))
525, 22ressmulr 16365 . . . 4 (ℕ0 ∈ V → · = (.r‘(ℂflds0)))
538, 52ax-mp 5 . . 3 · = (.r‘(ℂflds0))
54 ringmnd 18910 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
551, 54ax-mp 5 . . . 4 fld ∈ Mnd
56 0nn0 11635 . . . 4 0 ∈ ℕ0
57 cnfld0 20130 . . . . 5 0 = (0g‘ℂfld)
585, 18, 57ress0g 17672 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ℕ0 ⊆ ℂ) → 0 = (0g‘(ℂflds0)))
5955, 56, 12, 58mp3an 1589 . . 3 0 = (0g‘(ℂflds0))
6047, 48, 51, 53, 59issrg 18861 . 2 ((ℂflds0) ∈ SRing ↔ ((ℂflds0) ∈ CMnd ∧ (mulGrp‘(ℂflds0)) ∈ Mnd ∧ ∀𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))))
617, 30, 45, 60mpbir3an 1445 1 (ℂflds0) ∈ SRing
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  wss 3798  cfv 6123  (class class class)co 6905  cc 10250  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257  0cn0 11618  Basecbs 16222  s cress 16223  +gcplusg 16305  .rcmulr 16306  0gc0g 16453  Mndcmnd 17647  SubMndcsubmnd 17687  CMndccmn 18546  mulGrpcmgp 18843  SRingcsrg 18859  Ringcrg 18901  fldccnfld 20106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-grp 17779  df-minusg 17780  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-srg 18860  df-ring 18903  df-cring 18904  df-cnfld 20107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator