MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0srg Structured version   Visualization version   GIF version

Theorem nn0srg 20433
Description: The nonnegative integers form a semiring (commutative by subcmn 19222). (Contributed by Thierry Arnoux, 1-May-2018.)
Assertion
Ref Expression
nn0srg (ℂflds0) ∈ SRing

Proof of Theorem nn0srg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 20385 . . . 4 fld ∈ Ring
2 ringcmn 19599 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
31, 2ax-mp 5 . . 3 fld ∈ CMnd
4 nn0subm 20418 . . 3 0 ∈ (SubMnd‘ℂfld)
5 eqid 2737 . . . 4 (ℂflds0) = (ℂflds0)
65submcmn 19223 . . 3 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
73, 4, 6mp2an 692 . 2 (ℂflds0) ∈ CMnd
8 nn0ex 12096 . . . 4 0 ∈ V
9 eqid 2737 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
105, 9mgpress 19515 . . . 4 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ V) → ((mulGrp‘ℂfld) ↾s0) = (mulGrp‘(ℂflds0)))
113, 8, 10mp2an 692 . . 3 ((mulGrp‘ℂfld) ↾s0) = (mulGrp‘(ℂflds0))
12 nn0sscn 12095 . . . . 5 0 ⊆ ℂ
13 1nn0 12106 . . . . 5 1 ∈ ℕ0
14 nn0mulcl 12126 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 · 𝑦) ∈ ℕ0)
1514rgen2 3124 . . . . 5 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0
169ringmgp 19568 . . . . . . 7 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
171, 16ax-mp 5 . . . . . 6 (mulGrp‘ℂfld) ∈ Mnd
18 cnfldbas 20367 . . . . . . . 8 ℂ = (Base‘ℂfld)
199, 18mgpbas 19510 . . . . . . 7 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 20388 . . . . . . . 8 1 = (1r‘ℂfld)
219, 20ringidval 19518 . . . . . . 7 1 = (0g‘(mulGrp‘ℂfld))
22 cnfldmul 20369 . . . . . . . 8 · = (.r‘ℂfld)
239, 22mgpplusg 19508 . . . . . . 7 · = (+g‘(mulGrp‘ℂfld))
2419, 21, 23issubm 18230 . . . . . 6 ((mulGrp‘ℂfld) ∈ Mnd → (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0)))
2517, 24ax-mp 5 . . . . 5 (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0))
2612, 13, 15, 25mpbir3an 1343 . . . 4 0 ∈ (SubMnd‘(mulGrp‘ℂfld))
27 eqid 2737 . . . . 5 ((mulGrp‘ℂfld) ↾s0) = ((mulGrp‘ℂfld) ↾s0)
2827submmnd 18240 . . . 4 (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) → ((mulGrp‘ℂfld) ↾s0) ∈ Mnd)
2926, 28ax-mp 5 . . 3 ((mulGrp‘ℂfld) ↾s0) ∈ Mnd
3011, 29eqeltrri 2835 . 2 (mulGrp‘(ℂflds0)) ∈ Mnd
31 simpl 486 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑥 ∈ ℕ0)
3231nn0cnd 12152 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑥 ∈ ℂ)
33 simprl 771 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
3433nn0cnd 12152 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑦 ∈ ℂ)
35 simprr 773 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑧 ∈ ℕ0)
3635nn0cnd 12152 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑧 ∈ ℂ)
3732, 34, 36adddid 10857 . . . . . 6 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
3832, 34, 36adddird 10858 . . . . . 6 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
3937, 38jca 515 . . . . 5 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4039ralrimivva 3112 . . . 4 (𝑥 ∈ ℕ0 → ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
41 nn0cn 12100 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
4241mul02d 11030 . . . 4 (𝑥 ∈ ℕ0 → (0 · 𝑥) = 0)
4341mul01d 11031 . . . 4 (𝑥 ∈ ℕ0 → (𝑥 · 0) = 0)
4440, 42, 43jca32 519 . . 3 (𝑥 ∈ ℕ0 → (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))
4544rgen 3071 . 2 𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))
465, 18ressbas2 16791 . . . 4 (ℕ0 ⊆ ℂ → ℕ0 = (Base‘(ℂflds0)))
4712, 46ax-mp 5 . . 3 0 = (Base‘(ℂflds0))
48 eqid 2737 . . 3 (mulGrp‘(ℂflds0)) = (mulGrp‘(ℂflds0))
49 cnfldadd 20368 . . . . 5 + = (+g‘ℂfld)
505, 49ressplusg 16834 . . . 4 (ℕ0 ∈ V → + = (+g‘(ℂflds0)))
518, 50ax-mp 5 . . 3 + = (+g‘(ℂflds0))
525, 22ressmulr 16848 . . . 4 (ℕ0 ∈ V → · = (.r‘(ℂflds0)))
538, 52ax-mp 5 . . 3 · = (.r‘(ℂflds0))
54 ringmnd 19572 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
551, 54ax-mp 5 . . . 4 fld ∈ Mnd
56 0nn0 12105 . . . 4 0 ∈ ℕ0
57 cnfld0 20387 . . . . 5 0 = (0g‘ℂfld)
585, 18, 57ress0g 18201 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ℕ0 ⊆ ℂ) → 0 = (0g‘(ℂflds0)))
5955, 56, 12, 58mp3an 1463 . . 3 0 = (0g‘(ℂflds0))
6047, 48, 51, 53, 59issrg 19522 . 2 ((ℂflds0) ∈ SRing ↔ ((ℂflds0) ∈ CMnd ∧ (mulGrp‘(ℂflds0)) ∈ Mnd ∧ ∀𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))))
617, 30, 45, 60mpbir3an 1343 1 (ℂflds0) ∈ SRing
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  wss 3866  cfv 6380  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  0cn0 12090  Basecbs 16760  s cress 16784  +gcplusg 16802  .rcmulr 16803  0gc0g 16944  Mndcmnd 18173  SubMndcsubmnd 18217  CMndccmn 19170  mulGrpcmgp 19504  SRingcsrg 19520  Ringcrg 19562  fldccnfld 20363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-srg 19521  df-ring 19564  df-cring 19565  df-cnfld 20364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator