MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0srg Structured version   Visualization version   GIF version

Theorem nn0srg 21361
Description: The nonnegative integers form a semiring (commutative by subcmn 19774). (Contributed by Thierry Arnoux, 1-May-2018.)
Assertion
Ref Expression
nn0srg (ℂflds0) ∈ SRing

Proof of Theorem nn0srg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 21309 . . . 4 fld ∈ Ring
2 ringcmn 20198 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
31, 2ax-mp 5 . . 3 fld ∈ CMnd
4 nn0subm 21346 . . 3 0 ∈ (SubMnd‘ℂfld)
5 eqid 2730 . . . 4 (ℂflds0) = (ℂflds0)
65submcmn 19775 . . 3 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
73, 4, 6mp2an 692 . 2 (ℂflds0) ∈ CMnd
8 nn0ex 12455 . . . 4 0 ∈ V
9 eqid 2730 . . . . 5 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
105, 9mgpress 20066 . . . 4 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ V) → ((mulGrp‘ℂfld) ↾s0) = (mulGrp‘(ℂflds0)))
113, 8, 10mp2an 692 . . 3 ((mulGrp‘ℂfld) ↾s0) = (mulGrp‘(ℂflds0))
12 nn0sscn 12454 . . . . 5 0 ⊆ ℂ
13 1nn0 12465 . . . . 5 1 ∈ ℕ0
14 nn0mulcl 12485 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 · 𝑦) ∈ ℕ0)
1514rgen2 3178 . . . . 5 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0
169ringmgp 20155 . . . . . . 7 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
171, 16ax-mp 5 . . . . . 6 (mulGrp‘ℂfld) ∈ Mnd
18 cnfldbas 21275 . . . . . . . 8 ℂ = (Base‘ℂfld)
199, 18mgpbas 20061 . . . . . . 7 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 21312 . . . . . . . 8 1 = (1r‘ℂfld)
219, 20ringidval 20099 . . . . . . 7 1 = (0g‘(mulGrp‘ℂfld))
22 cnfldmul 21279 . . . . . . . 8 · = (.r‘ℂfld)
239, 22mgpplusg 20060 . . . . . . 7 · = (+g‘(mulGrp‘ℂfld))
2419, 21, 23issubm 18737 . . . . . 6 ((mulGrp‘ℂfld) ∈ Mnd → (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0)))
2517, 24ax-mp 5 . . . . 5 (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥 · 𝑦) ∈ ℕ0))
2612, 13, 15, 25mpbir3an 1342 . . . 4 0 ∈ (SubMnd‘(mulGrp‘ℂfld))
27 eqid 2730 . . . . 5 ((mulGrp‘ℂfld) ↾s0) = ((mulGrp‘ℂfld) ↾s0)
2827submmnd 18747 . . . 4 (ℕ0 ∈ (SubMnd‘(mulGrp‘ℂfld)) → ((mulGrp‘ℂfld) ↾s0) ∈ Mnd)
2926, 28ax-mp 5 . . 3 ((mulGrp‘ℂfld) ↾s0) ∈ Mnd
3011, 29eqeltrri 2826 . 2 (mulGrp‘(ℂflds0)) ∈ Mnd
31 simpl 482 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑥 ∈ ℕ0)
3231nn0cnd 12512 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑥 ∈ ℂ)
33 simprl 770 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
3433nn0cnd 12512 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑦 ∈ ℂ)
35 simprr 772 . . . . . . . 8 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑧 ∈ ℕ0)
3635nn0cnd 12512 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → 𝑧 ∈ ℂ)
3732, 34, 36adddid 11205 . . . . . 6 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
3832, 34, 36adddird 11206 . . . . . 6 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
3937, 38jca 511 . . . . 5 ((𝑥 ∈ ℕ0 ∧ (𝑦 ∈ ℕ0𝑧 ∈ ℕ0)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4039ralrimivva 3181 . . . 4 (𝑥 ∈ ℕ0 → ∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
41 nn0cn 12459 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
4241mul02d 11379 . . . 4 (𝑥 ∈ ℕ0 → (0 · 𝑥) = 0)
4341mul01d 11380 . . . 4 (𝑥 ∈ ℕ0 → (𝑥 · 0) = 0)
4440, 42, 43jca32 515 . . 3 (𝑥 ∈ ℕ0 → (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))
4544rgen 3047 . 2 𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))
465, 18ressbas2 17215 . . . 4 (ℕ0 ⊆ ℂ → ℕ0 = (Base‘(ℂflds0)))
4712, 46ax-mp 5 . . 3 0 = (Base‘(ℂflds0))
48 eqid 2730 . . 3 (mulGrp‘(ℂflds0)) = (mulGrp‘(ℂflds0))
49 cnfldadd 21277 . . . . 5 + = (+g‘ℂfld)
505, 49ressplusg 17261 . . . 4 (ℕ0 ∈ V → + = (+g‘(ℂflds0)))
518, 50ax-mp 5 . . 3 + = (+g‘(ℂflds0))
525, 22ressmulr 17277 . . . 4 (ℕ0 ∈ V → · = (.r‘(ℂflds0)))
538, 52ax-mp 5 . . 3 · = (.r‘(ℂflds0))
54 ringmnd 20159 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
551, 54ax-mp 5 . . . 4 fld ∈ Mnd
56 0nn0 12464 . . . 4 0 ∈ ℕ0
57 cnfld0 21311 . . . . 5 0 = (0g‘ℂfld)
585, 18, 57ress0g 18696 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ℕ0 ⊆ ℂ) → 0 = (0g‘(ℂflds0)))
5955, 56, 12, 58mp3an 1463 . . 3 0 = (0g‘(ℂflds0))
6047, 48, 51, 53, 59issrg 20104 . 2 ((ℂflds0) ∈ SRing ↔ ((ℂflds0) ∈ CMnd ∧ (mulGrp‘(ℂflds0)) ∈ Mnd ∧ ∀𝑥 ∈ ℕ0 (∀𝑦 ∈ ℕ0𝑧 ∈ ℕ0 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))))
617, 30, 45, 60mpbir3an 1342 1 (ℂflds0) ∈ SRing
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  0cn0 12449  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Mndcmnd 18668  SubMndcsubmnd 18716  CMndccmn 19717  mulGrpcmgp 20056  SRingcsrg 20102  Ringcrg 20149  fldccnfld 21271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-cnfld 21272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator