Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd2 Structured version   Visualization version   GIF version

Theorem istotbnd2 36026
Description: The predicate "is a totally bounded metric space." (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
istotbnd2 (𝑀 ∈ (Met‘𝑋) → (𝑀 ∈ (TotBnd‘𝑋) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Distinct variable groups:   𝑀,𝑑,𝑣,𝑏,𝑥   𝑋,𝑑,𝑣,𝑏,𝑥

Proof of Theorem istotbnd2
StepHypRef Expression
1 istotbnd 36025 . 2 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
21baib 536 1 (𝑀 ∈ (Met‘𝑋) → (𝑀 ∈ (TotBnd‘𝑋) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  wrex 3070   cuni 4851  cfv 6473  (class class class)co 7329  Fincfn 8796  +crp 12823  Metcmet 20681  ballcbl 20682  TotBndctotbnd 36022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6425  df-fun 6475  df-fv 6481  df-ov 7332  df-totbnd 36024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator